Research Article
BibTex RIS Cite

Nadir Toprak Elementi İlaveli ZnO-Esaslı Varistörlerin Elektriksel Özelliklerinin Karşılaştırılması

Year 2019, Volume: 6 Issue: 2, 415 - 423, 26.12.2019
https://doi.org/10.35193/bseufbd.622699

Abstract

ZnO esaslı
varistörler sahip oldukları doğrusal olmayan akım-voltaj (I-V) özelliği ile
elektronik devreleri ve devre elemanlarını voltaj dalgalanmalarına karşı
korumaktadır. Doğrusal olmayan I-V özelliği sayesinde varistörler farklı voltaj
değerlerinde farklı direnç gösterir.  Varistörlerde
kırılma voltajı olarak belirtilen kritik voltaj değeri aşıldığı takdirde, varistör
daha iletken hale gelerek oluşan yüksek akımı kendi üzerinden geçirerek devreyi
koruyan sigorta görevi görür.



Bu çalışmada ZnO-Bi2O3
esasla varistörlere çeşitli nadir toprak elementi katkısının (Y2O3,
Er
2O3, Sm2O3, La2O3,
Yb
2O3) mikroyapısal ve elektriksel özelliklerine etkileri
karşılaştırılmıştır. % 98,5 mol ZnO, % 1 mol Bi
2O3, % 0,5
mol (Y
2O3, Er2O3, Sm2O3,
La
2O3, Yb2O3) komposizyonunda beş
farklı varistör hazırlanmıştır. Bu kompozisyonlarda hazırlanan numuneler
1100°C’de 10 °C/dk ısıtma/soğutma hızında 1 saat sinterlenmiştir. Sonrasında
hazırlanan varistörlerin mikroyapısal ve elektriksel özellikleri
incelenmiştir.
  Yapılan analiz ve
hesaplamalar sonucunda en küçük tane boyutu (4μm)
  La2O3 katkılı
varistörde, en büyük tane boyutu (6,66 μm) Y
2O3 katlı
varistörde gerçekleşmiştir. Üretilen varistörlerin kırılma voltajı ( E
b)
büyükten küçüğe doğru sırasıyla C, D, B, A ve E kodlu numunelerde 149, 142,
116, 114 ve 28 volt/mm olarak ölçülmüştür. 

References

  • Apaydin, F., Ozkan Toplan, O., & Yildiz, K. (n.d.). The effect of CuO on the grain growth of ZnO. Retrieved from https://link.springer.com/content/pdf/10.1007%2Fs10853-005-6306-9.pdf
  • Ashraf, M. A., Bhuiyan, A. H., Hakim, M. A., & Hossain, M. T. (2011). Microstructure and electrical properties of Sm2O3 doped Bi2O3-based ZnO varistor ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 176(11), 855–860. https://doi.org/10.1016/j.mseb.2011.04.009
  • Bai, H., Li, S., Zhao, Y., Xu, Z., Chu, R., Hao, J., … Li, G. (2016). Influence of Cr2O3on highly nonlinear properties and low leakage current of ZnO-Bi2O3varistor ceramics. Ceramics International, 42(9), 10547–10550. https://doi.org/10.1016/j.ceramint.2016.03.042
  • Bernik, S., & Ai, B. (n.d.). Microstructural and electrical characteristics of Y 2 O 3 -doped ZnO–Bi 2 O 3 -based varistor ceramics.
  • Bernik, S., Daneu, N., & Rečnik, A. (2004). Inversion boundary induced grain growth in TiO2or Sb2O3doped ZnO-based varistor ceramics. Journal of the European Ceramic Society, 24(15–16), 3703–3708. https://doi.org/10.1016/j.jeurceramsoc.2004.03.004
  • Choi, S., Jung, H., & Kang, S. (2018). The correlation between surge energy capability and Bi2O3 volatilization in ZnO varistor, 2–6.
  • Desouky, O. (2016). ’ ’ Improvement of sintering , nonlinear electrical and dielectric properties of ZnO- based varistors doped with TiO2 ’ Improvement of sintering , nonlinear electrical , and dielectric, (April). https://doi.org/10.1088/1674-1056/25/6/068402
  • Hongyu, L., Hui, K., Dongmei, J., Wangzhou, S., & Xueming, M. (2007). Microstructure and Electrical Properties of Er2O3-Doped ZnO-Based Varistor Ceramics Prepared by High-Energy Ball Milling. Journal of Rare Earths, 25(1), 120–123. https://doi.org/10.1016/S1002-0721(07)60057-X
  • Kato, T., & Takada, Y. (2013). Correlation between electrical properties and crystalline phases for ZnO-Bi2O3 based varistor ceramics with rare earth additives. Journal of Electroceramics, 31(1–2), 138–142. https://doi.org/10.1007/s10832-013-9816-x
  • Kim, C. H., & Kim, J. H. (2004). Microstructure and electrical properties of ZnO-ZrO2-Bi2O3-M3O4(M=Co, Mn) varistors. Journal of the European Ceramic Society, 24(8), 2537–2546. https://doi.org/10.1016/j.jeurceramsoc.2003.07.002
  • M., L. L., & R., P. H. (1986). Zinc oxide varistors ― a review. American Ceramic Society Bulletin, 65(4). Retrieved from http://www.refdoc.fr/Detailnotice?idarticle
  • Ma, S., Xu, Z., Chu, R., Hao, J., Liu, M., Cheng, L., & Li, G. (2014). Influence of Cr2O3on ZnO-Bi2O3-MnO2-based varistor ceramics. Ceramics International, 40(7 PART A), 10149–10152. https://doi.org/10.1016/j.ceramint.2014.02.035
  • Nahm, C.-W. (2011). Microstructure, electrical properties, and aging behavior of ZnO–Pr6O11–CoO–Cr2O3–Y2O3–Er2O3 varistor ceramics. Ceramics International, 37(8), 3049–3054. https://doi.org/10.1016/j.ceramint.2011.05.032
  • Nahm, C. W., & Shin, B. C. (2003). Highly stable nonlinear properties of ZnO-Pr6O11-CoO-Cr2O3-Y2O3-based varistor ceramics. Materials Letters, 57(7), 1322–1326. https://doi.org/10.1016/S0167-577X(02)00980-1
  • Senda, T., & Bradt, R. C. (1990). Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics. Journal of the American Ceramic Society, 73(1), 106–114. https://doi.org/10.1111/j.1151-2916.1990.tb05099.x
  • Shen, B., Yao, X., Kang, L., & Peng, D. (2004). Effect of CuO or/and V2O5 oxide additives on Bi2O3–ZnO–Ta2O5 based ceramics. Ceramics International, 30(7), 1203–1206. https://doi.org/10.1016/J.CERAMINT.2003.12.101
  • Wang, M. H., Li, G., & Yao, C. (2011). Microstructure and electrical properties of Pr6O 11-Co3O4-MnCO3-Y2O 3-doped ZnO varistors. Ceramics International, 37(7), 2901–2905. https://doi.org/10.1016/j.ceramint.2011.03.076
  • Xu, D., Cheng, X. N., Wang, M. S., & Shi, L. Y. (2009). Microstructure and Electrical Properties of La2O3-Doped ZnO-Bi2O3 Based Varistor Ceramics. Advanced Materials Research, 79–82, 2007–2010. https://doi.org/10.4028/www.scientific.net/AMR.79-82.2007
  • Xu, Z., Bai, H., Ma, S., Chu, R., Hao, J., Chen, C., & Li, G. (2016). Effect of a Bi–Cr–O synthetic multi-phase on the microstructure and electrical properties of ZnO–Bi2O3varistor ceramics. Ceramics International, 42(13), 14350–14354. https://doi.org/10.1016/j.ceramint.2016.05.175
  • Zang, G. Z., Wang, X. F., Li, L. Ben, & Wang, D. D. (2017). The effect of Sm2O3on the microstructure and electrical properties of SiO2-doped SnO2-Zn2SnO4ceramic varistors. Ceramics International, 43(11), 8018–8022. https://doi.org/10.1016/j.ceramint.2017.03.100
Year 2019, Volume: 6 Issue: 2, 415 - 423, 26.12.2019
https://doi.org/10.35193/bseufbd.622699

Abstract

References

  • Apaydin, F., Ozkan Toplan, O., & Yildiz, K. (n.d.). The effect of CuO on the grain growth of ZnO. Retrieved from https://link.springer.com/content/pdf/10.1007%2Fs10853-005-6306-9.pdf
  • Ashraf, M. A., Bhuiyan, A. H., Hakim, M. A., & Hossain, M. T. (2011). Microstructure and electrical properties of Sm2O3 doped Bi2O3-based ZnO varistor ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 176(11), 855–860. https://doi.org/10.1016/j.mseb.2011.04.009
  • Bai, H., Li, S., Zhao, Y., Xu, Z., Chu, R., Hao, J., … Li, G. (2016). Influence of Cr2O3on highly nonlinear properties and low leakage current of ZnO-Bi2O3varistor ceramics. Ceramics International, 42(9), 10547–10550. https://doi.org/10.1016/j.ceramint.2016.03.042
  • Bernik, S., & Ai, B. (n.d.). Microstructural and electrical characteristics of Y 2 O 3 -doped ZnO–Bi 2 O 3 -based varistor ceramics.
  • Bernik, S., Daneu, N., & Rečnik, A. (2004). Inversion boundary induced grain growth in TiO2or Sb2O3doped ZnO-based varistor ceramics. Journal of the European Ceramic Society, 24(15–16), 3703–3708. https://doi.org/10.1016/j.jeurceramsoc.2004.03.004
  • Choi, S., Jung, H., & Kang, S. (2018). The correlation between surge energy capability and Bi2O3 volatilization in ZnO varistor, 2–6.
  • Desouky, O. (2016). ’ ’ Improvement of sintering , nonlinear electrical and dielectric properties of ZnO- based varistors doped with TiO2 ’ Improvement of sintering , nonlinear electrical , and dielectric, (April). https://doi.org/10.1088/1674-1056/25/6/068402
  • Hongyu, L., Hui, K., Dongmei, J., Wangzhou, S., & Xueming, M. (2007). Microstructure and Electrical Properties of Er2O3-Doped ZnO-Based Varistor Ceramics Prepared by High-Energy Ball Milling. Journal of Rare Earths, 25(1), 120–123. https://doi.org/10.1016/S1002-0721(07)60057-X
  • Kato, T., & Takada, Y. (2013). Correlation between electrical properties and crystalline phases for ZnO-Bi2O3 based varistor ceramics with rare earth additives. Journal of Electroceramics, 31(1–2), 138–142. https://doi.org/10.1007/s10832-013-9816-x
  • Kim, C. H., & Kim, J. H. (2004). Microstructure and electrical properties of ZnO-ZrO2-Bi2O3-M3O4(M=Co, Mn) varistors. Journal of the European Ceramic Society, 24(8), 2537–2546. https://doi.org/10.1016/j.jeurceramsoc.2003.07.002
  • M., L. L., & R., P. H. (1986). Zinc oxide varistors ― a review. American Ceramic Society Bulletin, 65(4). Retrieved from http://www.refdoc.fr/Detailnotice?idarticle
  • Ma, S., Xu, Z., Chu, R., Hao, J., Liu, M., Cheng, L., & Li, G. (2014). Influence of Cr2O3on ZnO-Bi2O3-MnO2-based varistor ceramics. Ceramics International, 40(7 PART A), 10149–10152. https://doi.org/10.1016/j.ceramint.2014.02.035
  • Nahm, C.-W. (2011). Microstructure, electrical properties, and aging behavior of ZnO–Pr6O11–CoO–Cr2O3–Y2O3–Er2O3 varistor ceramics. Ceramics International, 37(8), 3049–3054. https://doi.org/10.1016/j.ceramint.2011.05.032
  • Nahm, C. W., & Shin, B. C. (2003). Highly stable nonlinear properties of ZnO-Pr6O11-CoO-Cr2O3-Y2O3-based varistor ceramics. Materials Letters, 57(7), 1322–1326. https://doi.org/10.1016/S0167-577X(02)00980-1
  • Senda, T., & Bradt, R. C. (1990). Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics. Journal of the American Ceramic Society, 73(1), 106–114. https://doi.org/10.1111/j.1151-2916.1990.tb05099.x
  • Shen, B., Yao, X., Kang, L., & Peng, D. (2004). Effect of CuO or/and V2O5 oxide additives on Bi2O3–ZnO–Ta2O5 based ceramics. Ceramics International, 30(7), 1203–1206. https://doi.org/10.1016/J.CERAMINT.2003.12.101
  • Wang, M. H., Li, G., & Yao, C. (2011). Microstructure and electrical properties of Pr6O 11-Co3O4-MnCO3-Y2O 3-doped ZnO varistors. Ceramics International, 37(7), 2901–2905. https://doi.org/10.1016/j.ceramint.2011.03.076
  • Xu, D., Cheng, X. N., Wang, M. S., & Shi, L. Y. (2009). Microstructure and Electrical Properties of La2O3-Doped ZnO-Bi2O3 Based Varistor Ceramics. Advanced Materials Research, 79–82, 2007–2010. https://doi.org/10.4028/www.scientific.net/AMR.79-82.2007
  • Xu, Z., Bai, H., Ma, S., Chu, R., Hao, J., Chen, C., & Li, G. (2016). Effect of a Bi–Cr–O synthetic multi-phase on the microstructure and electrical properties of ZnO–Bi2O3varistor ceramics. Ceramics International, 42(13), 14350–14354. https://doi.org/10.1016/j.ceramint.2016.05.175
  • Zang, G. Z., Wang, X. F., Li, L. Ben, & Wang, D. D. (2017). The effect of Sm2O3on the microstructure and electrical properties of SiO2-doped SnO2-Zn2SnO4ceramic varistors. Ceramics International, 43(11), 8018–8022. https://doi.org/10.1016/j.ceramint.2017.03.100
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatih Apaydın 0000-0002-6905-7465

Ali Çelik This is me 0000-0001-6206-1587

Yasemin Çelik This is me 0000-0003-3993-6095

Publication Date December 26, 2019
Submission Date September 21, 2019
Acceptance Date November 2, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Apaydın, F., Çelik, A., & Çelik, Y. (2019). Nadir Toprak Elementi İlaveli ZnO-Esaslı Varistörlerin Elektriksel Özelliklerinin Karşılaştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 415-423. https://doi.org/10.35193/bseufbd.622699