Research Article
BibTex RIS Cite

A self-powered detection of glucose using glucose/air enzymatic fuel cell on a single chip

Year 2019, Volume: 6 Issue: 2, 135 - 146, 26.12.2019
https://doi.org/10.35193/bseufbd.631288

Abstract

Diabetes is a chronic and metabolic disorder that affects many people's quality of life and is becoming a growing problem. Therefore, monitoring and determining the amount of glucose in the blood is of great importance for the diagnosis of diabetes. In this study, a self-powered glucose determination was developed using glucose/air enzymatic fuel cell (EnFC) on a single chip. The anode of the EnFC is prepared by immobilizing glucose oxidase enzyme on ferrocene-nafion containing multi-walled carbon nanotube modified electrodes; the cathode, on the other hand, was prepared by immobilizing bilirubin oxidase enzyme on acid-treated single-walled carbon nanotube modified electrodes. The prepared anode and cathode were electrochemically characterized using glucose and oxygen substrates respectively. EnFC prepared on a single chip showed a linear response in the range of 0-3 mM glucose concentrations, achieving 32 mV/mM sensitivity and a response time of 30 seconds.

Supporting Institution

Bilecik Şeyh Edebali Üniversitesi

Project Number

2018-01.BŞEÜ.03-11

Thanks

This project was supported by the Scientific Research Projects Commission of Bilecik Şeyh Edebali University (Project No: 2018-01.BŞEÜ.03-11, 2019).

References

  • [1] J. Hovancová, I. Šišoláková, R. Oriňaková, and A. Oriňak, Nanomaterial-based electrochemical sensors for detection of glucose and insulin, Journal of Solid State Electrochemistry, 21 (2017) 2147-2166.
  • [2] H.A. Abdulbari and E.A.M. Basheer, Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication, ChemBioEng Reviews, 4 (2017) 92-105.
  • [3] E.T.S.G. da Silva, D.E.P. Souto, J.T.C. Barragan, J. de F. Giarola, A.C.M. de Moraes, and L.T. Kubota, Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends, ChemElectroChem, 4 (2017) 778-794.
  • [4] A. Heller, Miniature biofuel cells, Physical Chemistry Chemical Physics, 6 (2004) 209-216.
  • [5] K. Tian, M. Prestgard, and A. Tiwari, A review of recent advances in nonenzymatic glucose sensors, Materials Science and Engineering: C, 41 (2014) 100-118.
  • [6] M. Zhang, A. Smith, and W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes, Analytical Chemistry, 76 (2004) 5045-5050.
  • [7] W. Pitsawong, J. Sucharitakul, M. Prongjit, T.-C. Tan, O. Spadiut, D. Haltrich, C. Divne, and P. Chaiyen, A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase, The Journal of Biological Chemistry, 285 (2010) 9697-9705.
  • [8] E.H. Yu, R. Prodanovic, G. Güven, R. Ostafe, and U. Schwaneberg, Electrochemical Oxidation of Glucose Using Mutant Glucose Oxidase from Directed Protein Evolution for Biosensor and Biofuel Cell Applications, Applied Biochemistry and Biotechnology, 165 (2011) 1448-1457.
  • [9] A.T. Yahiro, S.M. Lee, and D.O. Kimble, Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies, Biochimica et Biophysica Acta (BBA)-Specialized Section on Biophysical Subjects, 88 (1964) 375-383.
  • [10] M. Zhou, Recent Progress on the Development of Biofuel Cells for Self‐Powered Electrochemical Biosensing and Logic Biosensing: A Review, Electroanalysis, 27 (2015) 1786-1810.
  • [11] I. Ivanov, T. Vidaković-Koch, and K. Sundmacher, Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling, Energies, 3 (2010) 803.
  • [12] M. Grattieri and S.D. Minteer, Self-powered biosensors, ACS sensors, 2017)
  • [13] E. Katz, A.F. Bückmann, and I. Willner, Self-powered enzyme-based biosensors, Journal of the American Chemical Society, 123 (2001) 10752-10753.
  • [14] E.H. Yu and K. Scott, Enzymatic Biofuel Cells—Fabrication of Enzyme Electrodes, Energies, 3 (2010) 23.
  • [15] M. Zhou and J. Wang, Biofuel Cells for Self‐Powered Electrochemical Biosensing and Logic Biosensing: A Review, Electroanalysis, 24 (2012) 197-209.
  • [16] G. Valdés-Ramírez, Y.-C. Li, J. Kim, W. Jia, A.J. Bandodkar, R. Nuñez-Flores, P.R. Miller, S.-Y. Wu, R. Narayan, and J.R. Windmiller, Microneedle-based self-powered glucose sensor, Electrochemistry Communications, 47 (2014) 58-62.
  • [17] H. Cheng, P. Yu, X. Lu, Y. Lin, T. Ohsaka, and L. Mao, Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain, Analyst, 138 (2013) 179-185.
  • [18] Z. Liu, B. Cho, T. Ouyang, and B. Feldman, Miniature amperometric self-powered continuous glucose sensor with linear response, Analytical chemistry, 84 (2012) 3403-3409.
  • [19] J. Halámek, T.K. Tam, G. Strack, V. Bocharova, M. Pita, and E. Katz, Self-powered biomolecular keypad lock security system based on a biofuel cell, Chemical Communications, 46 (2010) 2405-2407.
  • [20] J. Chen, C. Zhou, H. Liu, P. Li, Y. Song, and F. Xu, Signal Amplification of Self-Potential Biosensor for Glucose Monitoring, Int. J. Electrochem. Sci, 10 (2015) 9142-9153.
  • [21] M. Zhao, Y. Gao, J. Sun, and F. Gao, Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots, Analytical chemistry, 87 (2015) 2615-2622.
  • [22] J.K. Harkness, O.J. Murphy, and G.D. Hitchens, Enzyme electrodes based on ionomer films coated on electrodes, Journal of Electroanalytical Chemistry, 357 (1993) 261-272.
  • [23] P. Stepnicka, Ferrocenes: ligands, materials and biomolecules, John Wiley & Sons, 2008
  • [24] M. Saleem, H. Yu, L. Wang, A. Zain ul, H. Khalid, M. Akram, N.M. Abbasi, and J. Huang, Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing, Analytica Chimica Acta, 876 (2015) 9-25.
  • [25] S. Şahin, T. Wongnate, L. Chuaboon, P. Chaiyen, and E.H. Yu, Enzymatic fuel cells with an oxygen resistant variant of pyranose-2-oxidase as anode biocatalyst, Biosensors and Bioelectronics, 107 (2018) 17-25.
  • [26] S. Dong, B. Wang, and B. Liu, Amperometric glucose sensor with ferrocene as an electron transfer mediator, Biosensors and Bioelectronics, 7 (1992) 215-222.
  • [27] M. Vaillancourt, J. Wei Chen, G. Fortier, and D. Bélanger, Electrochemical and Enzymatic Studies of Electron Transfer Mediation by Ferrocene Derivatives with Nafion‐Glucose Oxidase Electrodes, Electroanalysis, 11 (1999) 23-31.
  • [28] F. Scholz, Thermodynamics of electrochemical reactions, in Electroanalytical Methods. 2010, Springer. p. 11-31.
  • [29] M.C. Weigel, E. Tritscher, and F. Lisdat, Direct electrochemical conversion of bilirubin oxidase at carbon nanotube-modified glassy carbon electrodes, Electrochemistry Communications, 9 (2007) 689-693.
  • [30] J.E. Sprague and A.M. Arbeláez, Glucose counterregulatory responses to hypoglycemia, Pediatric endocrinology reviews : PER, 9 (2011) 463-475.

Glikoz/hava enzimatik yakıt hücresi kullanılarak tek çip üzerinde glikoz tayini

Year 2019, Volume: 6 Issue: 2, 135 - 146, 26.12.2019
https://doi.org/10.35193/bseufbd.631288

Abstract

Diyabet
hastalığı, kronik ve metabolik bir rahatsızlık olup günümüzde birçok insanın
yaşam kalitesini etkilemekte ve giderek büyüyen bir sorun haline gelmektedir.
Bu nedenle kandaki glikoz miktarının takip edilmesi ve belirlenmesi diyabet
tanısı için büyük öneme sahiptir. Bu çalışmada, glikoz/hava enzimatik yakıt
hücresi kullanılarak kendi kendine çalışabilen bir glikoz tayin çipi geliştirilmiştir.
Enzimatik yakıt hücresinin anodu ferosen-nafyon içeren çok duvarlı karbon
nanotüpler ile modifiyeli elektrotlara glikoz oksidaz enziminin tutuklanmasıyla;
katodu ise, asitle muamele edilmiş tek duvarlı karbon nanotüple modifiyeli
elektrotlara bilirubin oksidaz enziminin tutuklanmasıyla hazırlanmıştır.
Hazırlanan anot ve katot sırasıyla glikoz ve oksijen substratları kullanılarak
elektrokimyasal olarak karakterize edilmiştir.  Tek çip üzerinde hazırlanan enzimatik yakıt hücresi
0-3 mM glikoz konsantrasyonu aralığında lineer sonuç vererek 32 mV/mM hassasiyetinde
glikoz tayini sağlamış ve 30 saniye gibi kısa bir sürede sonuç vermiştir.

Project Number

2018-01.BŞEÜ.03-11

References

  • [1] J. Hovancová, I. Šišoláková, R. Oriňaková, and A. Oriňak, Nanomaterial-based electrochemical sensors for detection of glucose and insulin, Journal of Solid State Electrochemistry, 21 (2017) 2147-2166.
  • [2] H.A. Abdulbari and E.A.M. Basheer, Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication, ChemBioEng Reviews, 4 (2017) 92-105.
  • [3] E.T.S.G. da Silva, D.E.P. Souto, J.T.C. Barragan, J. de F. Giarola, A.C.M. de Moraes, and L.T. Kubota, Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends, ChemElectroChem, 4 (2017) 778-794.
  • [4] A. Heller, Miniature biofuel cells, Physical Chemistry Chemical Physics, 6 (2004) 209-216.
  • [5] K. Tian, M. Prestgard, and A. Tiwari, A review of recent advances in nonenzymatic glucose sensors, Materials Science and Engineering: C, 41 (2014) 100-118.
  • [6] M. Zhang, A. Smith, and W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes, Analytical Chemistry, 76 (2004) 5045-5050.
  • [7] W. Pitsawong, J. Sucharitakul, M. Prongjit, T.-C. Tan, O. Spadiut, D. Haltrich, C. Divne, and P. Chaiyen, A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase, The Journal of Biological Chemistry, 285 (2010) 9697-9705.
  • [8] E.H. Yu, R. Prodanovic, G. Güven, R. Ostafe, and U. Schwaneberg, Electrochemical Oxidation of Glucose Using Mutant Glucose Oxidase from Directed Protein Evolution for Biosensor and Biofuel Cell Applications, Applied Biochemistry and Biotechnology, 165 (2011) 1448-1457.
  • [9] A.T. Yahiro, S.M. Lee, and D.O. Kimble, Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies, Biochimica et Biophysica Acta (BBA)-Specialized Section on Biophysical Subjects, 88 (1964) 375-383.
  • [10] M. Zhou, Recent Progress on the Development of Biofuel Cells for Self‐Powered Electrochemical Biosensing and Logic Biosensing: A Review, Electroanalysis, 27 (2015) 1786-1810.
  • [11] I. Ivanov, T. Vidaković-Koch, and K. Sundmacher, Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling, Energies, 3 (2010) 803.
  • [12] M. Grattieri and S.D. Minteer, Self-powered biosensors, ACS sensors, 2017)
  • [13] E. Katz, A.F. Bückmann, and I. Willner, Self-powered enzyme-based biosensors, Journal of the American Chemical Society, 123 (2001) 10752-10753.
  • [14] E.H. Yu and K. Scott, Enzymatic Biofuel Cells—Fabrication of Enzyme Electrodes, Energies, 3 (2010) 23.
  • [15] M. Zhou and J. Wang, Biofuel Cells for Self‐Powered Electrochemical Biosensing and Logic Biosensing: A Review, Electroanalysis, 24 (2012) 197-209.
  • [16] G. Valdés-Ramírez, Y.-C. Li, J. Kim, W. Jia, A.J. Bandodkar, R. Nuñez-Flores, P.R. Miller, S.-Y. Wu, R. Narayan, and J.R. Windmiller, Microneedle-based self-powered glucose sensor, Electrochemistry Communications, 47 (2014) 58-62.
  • [17] H. Cheng, P. Yu, X. Lu, Y. Lin, T. Ohsaka, and L. Mao, Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain, Analyst, 138 (2013) 179-185.
  • [18] Z. Liu, B. Cho, T. Ouyang, and B. Feldman, Miniature amperometric self-powered continuous glucose sensor with linear response, Analytical chemistry, 84 (2012) 3403-3409.
  • [19] J. Halámek, T.K. Tam, G. Strack, V. Bocharova, M. Pita, and E. Katz, Self-powered biomolecular keypad lock security system based on a biofuel cell, Chemical Communications, 46 (2010) 2405-2407.
  • [20] J. Chen, C. Zhou, H. Liu, P. Li, Y. Song, and F. Xu, Signal Amplification of Self-Potential Biosensor for Glucose Monitoring, Int. J. Electrochem. Sci, 10 (2015) 9142-9153.
  • [21] M. Zhao, Y. Gao, J. Sun, and F. Gao, Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots, Analytical chemistry, 87 (2015) 2615-2622.
  • [22] J.K. Harkness, O.J. Murphy, and G.D. Hitchens, Enzyme electrodes based on ionomer films coated on electrodes, Journal of Electroanalytical Chemistry, 357 (1993) 261-272.
  • [23] P. Stepnicka, Ferrocenes: ligands, materials and biomolecules, John Wiley & Sons, 2008
  • [24] M. Saleem, H. Yu, L. Wang, A. Zain ul, H. Khalid, M. Akram, N.M. Abbasi, and J. Huang, Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing, Analytica Chimica Acta, 876 (2015) 9-25.
  • [25] S. Şahin, T. Wongnate, L. Chuaboon, P. Chaiyen, and E.H. Yu, Enzymatic fuel cells with an oxygen resistant variant of pyranose-2-oxidase as anode biocatalyst, Biosensors and Bioelectronics, 107 (2018) 17-25.
  • [26] S. Dong, B. Wang, and B. Liu, Amperometric glucose sensor with ferrocene as an electron transfer mediator, Biosensors and Bioelectronics, 7 (1992) 215-222.
  • [27] M. Vaillancourt, J. Wei Chen, G. Fortier, and D. Bélanger, Electrochemical and Enzymatic Studies of Electron Transfer Mediation by Ferrocene Derivatives with Nafion‐Glucose Oxidase Electrodes, Electroanalysis, 11 (1999) 23-31.
  • [28] F. Scholz, Thermodynamics of electrochemical reactions, in Electroanalytical Methods. 2010, Springer. p. 11-31.
  • [29] M.C. Weigel, E. Tritscher, and F. Lisdat, Direct electrochemical conversion of bilirubin oxidase at carbon nanotube-modified glassy carbon electrodes, Electrochemistry Communications, 9 (2007) 689-693.
  • [30] J.E. Sprague and A.M. Arbeláez, Glucose counterregulatory responses to hypoglycemia, Pediatric endocrinology reviews : PER, 9 (2011) 463-475.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Samet Şahin 0000-0002-0568-4283

Project Number 2018-01.BŞEÜ.03-11
Publication Date December 26, 2019
Submission Date October 9, 2019
Acceptance Date October 30, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Şahin, S. (2019). A self-powered detection of glucose using glucose/air enzymatic fuel cell on a single chip. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 135-146. https://doi.org/10.35193/bseufbd.631288