Günümüzde rüzgar enerjisinden daha fazla
faydalanabilmek için, düşey eksenli türbinlerin yaygınlaşması gerekmekte ve
kırsal veya şehiriçi her türlü alanda kullanılması gerekmektedir. Dikey eksenli
türbin uygulamaları için Savonius ve Darrieus tipi türbinler yoğun bir şekilde
kullanılmakta olup, performanslarını arttırmak için Savonius-Darrieus rüzgar
türbinleri birlikte kullanım örnekleri görülmektedir. Bu sebeple yapılan
çalışmalara göre tek başına kullanılan Savonius veya Darrieus rüzgar
türbinlerine kıyasla birlikte kullanımının daha etkili performans sonucunu
verdiği araştırmalarda görülmüştür. Dikey
eksenli türbinlerin şehiriçi uygulamaları için uygulanabilirliği düşünüldüğünde
bu türbinler üzerine daha fazla çalışma yapılması gerekmekte olup ayrıca yeni
tasarım araştırma ve geliştirme çalışmaları yapılmalıdır.
[1] Türkiye İstatistik Rüzgar Enerjisi İstatistik Raporu (2019). http://www.tureb.com.tr/files/bilgi_bankasi/ turkiye_res_durumu/istatistik_raporu_temmuz_2019.pdf
[2] Mustafa Çalışkan, Türkiye Rüzgar Enerjisi Potansiyeli Raporu 2010. https://www.mgm.gov.tr/files/ haberler/2010/rets-seminer/2_mustafa_caliskan_ritm.pdf
[3] Koç, E., & Şenel, M. C. (2013). Dünyada ve Türkiye’de enerji durumu-genel değerlendirme. Mühendis ve Makina, 54(639), 32-44.
[4] Nurbay, N., & Çınar, A. (2005). Rüzgar türbinlerinin çeşitleri ve birbirleriyle karşılaştırılması. III. Yenilenebilir Enerji Kaynakları Sempozyumu, 19-21.
[5] Mojola, O. O. (1985). On the aerodynamic design of the Savonius windmill rotor. Journal of Wind Engineering and Industrial Aerodynamics, 21(2), 223-231.
[6] Ricci, R., Vitali, D., & Montelpare, S. (2014). An innovative wind–solar hybrid street light: development and early testing of a prototype. International Journal of Low-Carbon Technologies, 10(4), 420-429.
[7] NEWMAN, B. (1974). Measurements on Savonius Rotor with Variable Gap, Proceedings of the University of Sherbrook Conference on Wind Energy. Sherbrooke, Quebec, 116s, Canada.
[8] Modi, V. J., & Fernando, M. S. U. K. (1989). On the performance of the Savonius wind türbine, J. Sol. Energy Eng., 111(1): 71-81.
[9] Reupke, P., & Probert, S. D. (1991). Slatted-blade Savonius wind-rotors. Applied Energy, 40(1), 65-75.
[10] Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19-25.
[11] Svetlana Marmutova, M. (2016). The improved Savonius wind turbine captures wind in the cities: University of Vaasa, Doktora Tezi.
[12] ELİBÜYÜK, U., & ÜÇGÜL, İ. (2014). Rüzgâr Türbinleri, Çeşitleri Ve Rüzgâr Enerjisi Depolama Yöntemleri. SDÜ Yekarum e-Dergi, 2(3).
[14] Howell, R., Qin, N., Edwards, J., & Durrani, N. (2010). Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy, 35(2), 412-422.
[15] Goude, A.2012. Fluid Mechanics of Vertical Axis Turbines: Simulations and Model Development. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 998, Uppsala University.
[16] Banas J F, Sullivan W N.Sandia. 1976. Vertical-Axis Wind Turbine Program Technical Quarterly Report. Sandia Laboratuvarları
[17] Sheldalh R E, Klimas P C, Feltz L V. 1980. Aerodynamic Performance of a 5-Metre-Diameter Darrieus Turbine With Extruded Aluminum NACA-0015 Blades. Sandia Laboratuvarları.
[18] Tescione, G., Ragni, D., He, C., Ferreira, C. S., & Van Bussel, G. J. W. (2014). Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy, 70, 47-61.
[19] Lam, H. F., & Peng, H. Y. (2016). Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations. Renewable Energy, 90, 386-398.
[20] Li, Q. A., Maeda, T., Kamada, Y., Murata, J., Yamamoto, M., Ogasawara, T., ... & Kogaki, T. (2016). Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test. Renewable Energy, 90, 291-300.
[21] Shigemitsu, T., Fukutomi, J., & Toyohara, M. (2016). Performance and flow condition of cross-flow wind turbine with a symmetrical casing having side boards. International Journal of Fluid Machinery and Systems, 9(2), 169-174.
[22] Araya, D. B., Craig, A. E., Kinzel, M., & Dabiri, J. O. (2014). Low-order modeling of wind farm aerodynamics using leaky Rankine bodies. Journal of Renewable and Sustainable Energy, 6(6), 063118.
[23] Dabiri, J. O., Greer, J. R., Koseff, J. R., Moin, P., & Peng, J. (2015, March). A new approach to wind energy: opportunities and challenges. In AIP Conference Proceedings (Vol. 1652, No. 1, pp. 51-57). AIP.
[24] Chong, W. T., Fazlizan, A., Poh, S. C., Pan, K. C., Hew, W. P., & Hsiao, F. B. (2013). The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Applied Energy, 112, 601-609.
[25] Li, Y., Zhao, S., Tagawa, K., & Feng, F. (2018). Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Conversion and Management, 167, 70-80.
[26] Koca, K., Genç, M. S., Açıkel, H. H., Çağdaş, M., & Bodur, T. M. (2018). Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution. Energy, 144, 750-764.
[27] Genç, M. S., Koca, K., Açıkel, H. H., Özkan, G., Kırış, M. S., & Yıldız, R. (2016). Flow characteristics over NACA4412 airfoil at low Reynolds number. EPJ Web of Conferences, 114, 02029 (2016).
[28] Genç, M. S., Koca, K., & Acikel, H. H. (2019). Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element. Energy, 176, 320-334.
[29] Koca, K., Genç, M. S., & Açıkel, H. H. Rüzgar Türbini Kanadı Üzerindeki Yüzey Pürüzlülüğü Etkisinin Deneysel İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS2), 127-134.
[31] Combined Darrieus-Savonius generator used in Taiwan Jul 18, 2016 12:14 AM. URL: https://en.wikipedia.org/wiki/Savonius_wind_turbine
[32] Wakui, T., Tanzawa, Y., Hashizume, T., & Nagao, T. (2005). Hybrid configuration of Darrieus and Savonius rotors for stand‐alone wind turbine‐generator systems. Electrical Engineering in Japan, 150(4), 13-22.
[33] R. Gupta, R. Das & K.K. (2006). Sharma: Proceedings of the International Conference on Renewable Energy for Developing Countries.
[34] Liang, X., Fu, S., Ou, B., Wu, C., Chao, C. Y., & Pi, K. (2017). A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renewable energy, 113, 329-334.
[35] Ali Shan Siddiqui , Syet Nadeem Mian, Muhammad Alam, Muhammad Saleem ul Haq, Abdul Hameed Memon, Muhammad Shahzad Jamil Energy Nov. 2018. Experimental Study to Assess the Performance of Combined Savonius Darrieus Vertical Axis Wind Turbine at Different Arrangements. Publisher: IEEE DOI: 10.1109/INMIC.2018.8595538.
[36] Oğulata, R. T. (2003). Energy sector and wind energy potential in Turkey. Renewable and Sustainable Energy Reviews, 7(6), 469-484.
[37] Tabatabaeikia, S., Ghazali, N. N. B. N., Chong, W. T., Shahizare, B., Izadyar, N., Esmaeilzadeh, A., & Fazlizan, A. (2016). Computational and experimental optimization of the exhaust air energy recovery wind turbine generator. Energy Conversion and Management, 126, 862-874.
Year 2019,
Volume: 6 Issue: 2, 539 - 551, 26.12.2019
[1] Türkiye İstatistik Rüzgar Enerjisi İstatistik Raporu (2019). http://www.tureb.com.tr/files/bilgi_bankasi/ turkiye_res_durumu/istatistik_raporu_temmuz_2019.pdf
[2] Mustafa Çalışkan, Türkiye Rüzgar Enerjisi Potansiyeli Raporu 2010. https://www.mgm.gov.tr/files/ haberler/2010/rets-seminer/2_mustafa_caliskan_ritm.pdf
[3] Koç, E., & Şenel, M. C. (2013). Dünyada ve Türkiye’de enerji durumu-genel değerlendirme. Mühendis ve Makina, 54(639), 32-44.
[4] Nurbay, N., & Çınar, A. (2005). Rüzgar türbinlerinin çeşitleri ve birbirleriyle karşılaştırılması. III. Yenilenebilir Enerji Kaynakları Sempozyumu, 19-21.
[5] Mojola, O. O. (1985). On the aerodynamic design of the Savonius windmill rotor. Journal of Wind Engineering and Industrial Aerodynamics, 21(2), 223-231.
[6] Ricci, R., Vitali, D., & Montelpare, S. (2014). An innovative wind–solar hybrid street light: development and early testing of a prototype. International Journal of Low-Carbon Technologies, 10(4), 420-429.
[7] NEWMAN, B. (1974). Measurements on Savonius Rotor with Variable Gap, Proceedings of the University of Sherbrook Conference on Wind Energy. Sherbrooke, Quebec, 116s, Canada.
[8] Modi, V. J., & Fernando, M. S. U. K. (1989). On the performance of the Savonius wind türbine, J. Sol. Energy Eng., 111(1): 71-81.
[9] Reupke, P., & Probert, S. D. (1991). Slatted-blade Savonius wind-rotors. Applied Energy, 40(1), 65-75.
[10] Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19-25.
[11] Svetlana Marmutova, M. (2016). The improved Savonius wind turbine captures wind in the cities: University of Vaasa, Doktora Tezi.
[12] ELİBÜYÜK, U., & ÜÇGÜL, İ. (2014). Rüzgâr Türbinleri, Çeşitleri Ve Rüzgâr Enerjisi Depolama Yöntemleri. SDÜ Yekarum e-Dergi, 2(3).
[14] Howell, R., Qin, N., Edwards, J., & Durrani, N. (2010). Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy, 35(2), 412-422.
[15] Goude, A.2012. Fluid Mechanics of Vertical Axis Turbines: Simulations and Model Development. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 998, Uppsala University.
[16] Banas J F, Sullivan W N.Sandia. 1976. Vertical-Axis Wind Turbine Program Technical Quarterly Report. Sandia Laboratuvarları
[17] Sheldalh R E, Klimas P C, Feltz L V. 1980. Aerodynamic Performance of a 5-Metre-Diameter Darrieus Turbine With Extruded Aluminum NACA-0015 Blades. Sandia Laboratuvarları.
[18] Tescione, G., Ragni, D., He, C., Ferreira, C. S., & Van Bussel, G. J. W. (2014). Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy, 70, 47-61.
[19] Lam, H. F., & Peng, H. Y. (2016). Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations. Renewable Energy, 90, 386-398.
[20] Li, Q. A., Maeda, T., Kamada, Y., Murata, J., Yamamoto, M., Ogasawara, T., ... & Kogaki, T. (2016). Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test. Renewable Energy, 90, 291-300.
[21] Shigemitsu, T., Fukutomi, J., & Toyohara, M. (2016). Performance and flow condition of cross-flow wind turbine with a symmetrical casing having side boards. International Journal of Fluid Machinery and Systems, 9(2), 169-174.
[22] Araya, D. B., Craig, A. E., Kinzel, M., & Dabiri, J. O. (2014). Low-order modeling of wind farm aerodynamics using leaky Rankine bodies. Journal of Renewable and Sustainable Energy, 6(6), 063118.
[23] Dabiri, J. O., Greer, J. R., Koseff, J. R., Moin, P., & Peng, J. (2015, March). A new approach to wind energy: opportunities and challenges. In AIP Conference Proceedings (Vol. 1652, No. 1, pp. 51-57). AIP.
[24] Chong, W. T., Fazlizan, A., Poh, S. C., Pan, K. C., Hew, W. P., & Hsiao, F. B. (2013). The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Applied Energy, 112, 601-609.
[25] Li, Y., Zhao, S., Tagawa, K., & Feng, F. (2018). Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Conversion and Management, 167, 70-80.
[26] Koca, K., Genç, M. S., Açıkel, H. H., Çağdaş, M., & Bodur, T. M. (2018). Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution. Energy, 144, 750-764.
[27] Genç, M. S., Koca, K., Açıkel, H. H., Özkan, G., Kırış, M. S., & Yıldız, R. (2016). Flow characteristics over NACA4412 airfoil at low Reynolds number. EPJ Web of Conferences, 114, 02029 (2016).
[28] Genç, M. S., Koca, K., & Acikel, H. H. (2019). Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element. Energy, 176, 320-334.
[29] Koca, K., Genç, M. S., & Açıkel, H. H. Rüzgar Türbini Kanadı Üzerindeki Yüzey Pürüzlülüğü Etkisinin Deneysel İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS2), 127-134.
[31] Combined Darrieus-Savonius generator used in Taiwan Jul 18, 2016 12:14 AM. URL: https://en.wikipedia.org/wiki/Savonius_wind_turbine
[32] Wakui, T., Tanzawa, Y., Hashizume, T., & Nagao, T. (2005). Hybrid configuration of Darrieus and Savonius rotors for stand‐alone wind turbine‐generator systems. Electrical Engineering in Japan, 150(4), 13-22.
[33] R. Gupta, R. Das & K.K. (2006). Sharma: Proceedings of the International Conference on Renewable Energy for Developing Countries.
[34] Liang, X., Fu, S., Ou, B., Wu, C., Chao, C. Y., & Pi, K. (2017). A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renewable energy, 113, 329-334.
[35] Ali Shan Siddiqui , Syet Nadeem Mian, Muhammad Alam, Muhammad Saleem ul Haq, Abdul Hameed Memon, Muhammad Shahzad Jamil Energy Nov. 2018. Experimental Study to Assess the Performance of Combined Savonius Darrieus Vertical Axis Wind Turbine at Different Arrangements. Publisher: IEEE DOI: 10.1109/INMIC.2018.8595538.
[36] Oğulata, R. T. (2003). Energy sector and wind energy potential in Turkey. Renewable and Sustainable Energy Reviews, 7(6), 469-484.
[37] Tabatabaeikia, S., Ghazali, N. N. B. N., Chong, W. T., Shahizare, B., Izadyar, N., Esmaeilzadeh, A., & Fazlizan, A. (2016). Computational and experimental optimization of the exhaust air energy recovery wind turbine generator. Energy Conversion and Management, 126, 862-874.