Let R be a commutative ring with identity 1 whose involutives are only -1 and 1, and let M be an upper triangular matrices ring which entries are taken from the ring R. In the study, it is established the necessary and sufficient conditions for an element taken from the ring M to be involutive. Also, when R is finite, it is given a result determining the number of involutive elements in the ring M, and this result is supported by numerical examples.
R, birimli, involutifleri sadece -1 ve 1 olan bir değişmeli halka ve M, elemanları R halkası üzerinden alınan bir üst üçgensel matrisler halkası olsun. Çalışmada, M halkasından alınan bir elemanın involutif olması için gerek ve yeter koşullar ortaya koyulmaktadır. Ayrıca, R sonlu olduğunda, M halkasındaki involutif elemanların sayısını belirleyen bir sonuç verilmekte ve bu sonuç sayısal örneklerle desteklenmektedir.
| Primary Language | Turkish |
|---|---|
| Journal Section | Articles |
| Authors | |
| Publication Date | June 28, 2020 |
| Submission Date | February 21, 2020 |
| Acceptance Date | April 13, 2020 |
| Published in Issue | Year 2020 Volume: 7 Issue: 1 |