Research Article
BibTex RIS Cite

The Effect of Multipath on Bandwidth, Capacity and Transmission Power in Underwater Communication

Year 2020, Volume: 7 Issue: 1, 404 - 420, 28.06.2020
https://doi.org/10.35193/bseufbd.706560

Abstract

Advances in communication technologies for the underwater environment have led to the emergence of new underwater acoustic communication techniques. In parallel with these developments, with the development of material and sensor technologies, these technologies have become feasible. Thus, the studies for transmitting data at high bandwidths and long distances in the underwater environment have increased. The chaotic nature of the underwater environment makes it difficult to transmit data from the source to the receiver. Low frequencies are preferred in underwater communication studies because the systems designed to operate at high frequencies cannot be transmitted to long distances at high frequencies and have limited bandwidth. Communication between two points directly affects bandwidth, source transmission power, and source-receiver distance. In the environment where the communication will be carried out, the signals emitted from the source are received as multi-way in the sensor. Especially reflections from the surface and bottom cause the signals received in the sensor to be distorted. In this study, using the transmission loss, absorption loss, and ambient noise models proposed in the literature in the underwater environment, bandwidth, capacity, and transmission power calculations were performed. In calculations, the effects of the different number of multipath signals reaching the receiver from the source, the different dip/surface reflection attenuation to which the multipath signals are exposed, and the distance between the source-receiver on the bandwidth, capacity, and transmission power were analyzed. As a result of the analysis, it was found that the number of multipath signals reaching the receiver from the source, the level of the bottom/surface reflection attenuation, and the distance between the source-receiver directly affect the bandwidth, capacity and transmission power.

References

  • Dola, H., Bloma, K., Colina, M., Priora, M. (2017). Characterizing the Underwater Acoustic Communiıcations Channel in Shallow Estuaries and its Applicatıon to the Development of a Flexible Wideband Modulation. 4th Underwater Acoustics Conference and Exhibition, 3-8 Eylül, Island of Skiathos, 933-940.
  • Stojanovic, M., Preisig, J. (2009). Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Commun. Mag. 47(1), 84-89.
  • Hayward, T. J., Yang, T. C. (2004). Underwater Acoustic Communication Channel Capacity: A Simulation Study. AIP Conference Proceedings, 19-30 Temmuz, Mexico City, 114-121.
  • Urick, R. J. (1983). Principles of Underwater Sound. 3rd Ed. McGraw Hill Book Co., New York, 423.
  • Etter, P. C. (2018). Underwater Acoustic Modeling and Simulation. CRC press, Florida, 638.
  • Leroy, C. C. (1969). Development of Simple Equations for Accurate and More Realistic Calculation of the Speed of Sound in Seawater. J. Acoust. Soc. Am., 46(1B), 216-226.
  • Medwin, H. (1975). Speed of Sound in Water: A Simple Equation for Realistic Parameters. J. Acoust. Soc. Am., 58(6), 1318-1319.
  • Mackenzie, K. V. (1981). Nine‐Term Equation for Sound Speed in the Oceans. J. Acoust. Soc. Am., 70(3), 807-812.
  • RBR. (2020). https://rbr-global.com/products/standard-loggers/rbrduo-ct, (18.03.2020).
  • Richard, P. H. (2010). Underwater Acoustics: Analysis, Design, and Performance of Sonar. John Wiley and Sons, West Sussex, 366.
  • Knudsen, V. O., Alford, R. S., and Emiling, J. W. (1944). Survey of Underwater Sound, Report 3. Ambient Noise. NRDC 1848.
  • Wenz, G. M. (1962). Acoustic Ambient Noise in the Ocean: Spectra and Sources. J. Acoust. Soc. Am., 34(12), 1936-1956.
  • Crouch, W. W. (1972). Ambient Noise in the Sea. http://users.ece.utexas.edu/~ling/1A_US1.pdf, Naval Underwater Systems Center, (18.03.2020).
  • Urick, R. J. (1982). Sound Propagation in the Sea. Peninsula Publishing, California, 226.
  • Coates, R. (1989). Underwater Acoustic Systems, Wiley, New York, 188.
  • What are common underwater sounds. (2018). https://dosits.org/science/sounds-in-the-sea/what-are-common-underwater-sounds/, (18.03.2020).
  • Readhead, M. L. (2014). Is Underwater Thermal Noise Useful?. Inter-Noise and Noise-Con Congress and Conference Proceedings, 16-19 Kasım, Melbourne, 4978-4983.
  • Özen, S., Öner, M., Çavuşlu, M. A., İlgüy, A. C., Tatar, Ö., Başaran, Y. H. (2013). Simulation and Estimation of Underwater Acoustical Tonals Emanating From Naval Platforms. 21st Signal Processing and Communications Applications Conference (SIU), 24-26 Nisan, Girne, Kıbrıs, 1-4.
  • Özen, S., Çavuslu, M. A., Basaran, Y. H., Öner, M., Tatar, Ö. (2012). Deniz Platformlarının ve Sualtı Ortamı Akustik Sinyallerinin Benzetimi. 20st Signal Processing and Communications Applications Conference (SIU), 18-20 Nisan, Muğla, 1-4.
  • Thorp, W. H. (1967). Analytic Description of the Low‐Frequency Attenuation Coefficient. J. Acoust. Soc. Am., 42:1, 270.
  • Diamant, R., Chorev, L. (2005). Emulation System for Underwater Acoustic Channel. International Undersea Defence Technology Europe conference, 20-23 Haziran, Amsterdam, 2-6.

Sualtı Haberleşmede Çok Yolluluğun Bant Genişliği, Kapasite ve İletim Gücü Üzerindeki Etkisi

Year 2020, Volume: 7 Issue: 1, 404 - 420, 28.06.2020
https://doi.org/10.35193/bseufbd.706560

Abstract

Sualtı ortamına yönelik haberleşme teknolojilerindeki gelişmeler, yeni sualtı akustik iletişim tekniklerinin ortaya çıkmasını sağlamıştır. Bu gelişmelere paralel olarak malzeme ve algılayıcı teknolojilerinin de gelişmeleri ile birlikte, bu teknolojiler uygulanabilir hale gelmiştir. Böylece sualtı ortamında yüksek bant genişliklerinde, uzak mesafelere veri iletimine yönelik çalışmalar artmıştır. Sualtı ortamının kaotik yapısı, kaynaktan alıcıya veri iletimini zor hale getirmektedir. Sualtında yüksek frekanslarda uzak mesafelere iletim gerçekleştirilememesi ve yüksek frekanslarda çalışacak şekilde tasarlanan sistemlerin sınırlı bant genişliğine sahip olması nedeni ile sualtı haberleşmeye yönelik çalışmalarda düşük frekanslar tercih edilmektedir. İki nokta arasında gerçekleştirilecek iletişim bant genişliğinden, kaynak iletim gücünden ve kaynak-alıcı arası mesafeden doğrudan etkilemektedir. İletişimin gerçekleştirileceği ortamda kaynaktan yayılan sinyaller algılayıcıda çok yollu olarak alınmaktadır. Özellikle yüzeyden ve dipten yansımalar, algılayıcıda alınan sinyallerin bozulmasına sebep olmaktadır. Bu çalışma kapsamında, sualtı ortamında literatürde önerilen iletim kaybı, emilim kaybı ve ortam gürültüsü modelleri kullanılarak bant genişliği, kapasite ve iletim gücü hesapları gerçekleştirilmiştir. Hesaplamalarda kaynaktan alıcıya ulaşan farklı sayıda çok yollu sinyaller, çok yollu sinyallerin maruz kaldığı farklı dip/yüzey yansıma zayıflamalarının ve kaynak alıcı arası mesafenin bant genişliği, kapasite ve iletim gücü üzerindeki etkisi analiz edilmiştir. Analizler sonucunda kaynaktan alıcıya ulaşan çok yollu sinyallerin sayısının, dip/yüzey yansıma zayıflamalarının seviyesinin ve kaynak alıcı arasındaki mesafenin bant genişliği, kapasite ve iletim gücünü doğrudan etkilediği görülmüştür.

References

  • Dola, H., Bloma, K., Colina, M., Priora, M. (2017). Characterizing the Underwater Acoustic Communiıcations Channel in Shallow Estuaries and its Applicatıon to the Development of a Flexible Wideband Modulation. 4th Underwater Acoustics Conference and Exhibition, 3-8 Eylül, Island of Skiathos, 933-940.
  • Stojanovic, M., Preisig, J. (2009). Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Commun. Mag. 47(1), 84-89.
  • Hayward, T. J., Yang, T. C. (2004). Underwater Acoustic Communication Channel Capacity: A Simulation Study. AIP Conference Proceedings, 19-30 Temmuz, Mexico City, 114-121.
  • Urick, R. J. (1983). Principles of Underwater Sound. 3rd Ed. McGraw Hill Book Co., New York, 423.
  • Etter, P. C. (2018). Underwater Acoustic Modeling and Simulation. CRC press, Florida, 638.
  • Leroy, C. C. (1969). Development of Simple Equations for Accurate and More Realistic Calculation of the Speed of Sound in Seawater. J. Acoust. Soc. Am., 46(1B), 216-226.
  • Medwin, H. (1975). Speed of Sound in Water: A Simple Equation for Realistic Parameters. J. Acoust. Soc. Am., 58(6), 1318-1319.
  • Mackenzie, K. V. (1981). Nine‐Term Equation for Sound Speed in the Oceans. J. Acoust. Soc. Am., 70(3), 807-812.
  • RBR. (2020). https://rbr-global.com/products/standard-loggers/rbrduo-ct, (18.03.2020).
  • Richard, P. H. (2010). Underwater Acoustics: Analysis, Design, and Performance of Sonar. John Wiley and Sons, West Sussex, 366.
  • Knudsen, V. O., Alford, R. S., and Emiling, J. W. (1944). Survey of Underwater Sound, Report 3. Ambient Noise. NRDC 1848.
  • Wenz, G. M. (1962). Acoustic Ambient Noise in the Ocean: Spectra and Sources. J. Acoust. Soc. Am., 34(12), 1936-1956.
  • Crouch, W. W. (1972). Ambient Noise in the Sea. http://users.ece.utexas.edu/~ling/1A_US1.pdf, Naval Underwater Systems Center, (18.03.2020).
  • Urick, R. J. (1982). Sound Propagation in the Sea. Peninsula Publishing, California, 226.
  • Coates, R. (1989). Underwater Acoustic Systems, Wiley, New York, 188.
  • What are common underwater sounds. (2018). https://dosits.org/science/sounds-in-the-sea/what-are-common-underwater-sounds/, (18.03.2020).
  • Readhead, M. L. (2014). Is Underwater Thermal Noise Useful?. Inter-Noise and Noise-Con Congress and Conference Proceedings, 16-19 Kasım, Melbourne, 4978-4983.
  • Özen, S., Öner, M., Çavuşlu, M. A., İlgüy, A. C., Tatar, Ö., Başaran, Y. H. (2013). Simulation and Estimation of Underwater Acoustical Tonals Emanating From Naval Platforms. 21st Signal Processing and Communications Applications Conference (SIU), 24-26 Nisan, Girne, Kıbrıs, 1-4.
  • Özen, S., Çavuslu, M. A., Basaran, Y. H., Öner, M., Tatar, Ö. (2012). Deniz Platformlarının ve Sualtı Ortamı Akustik Sinyallerinin Benzetimi. 20st Signal Processing and Communications Applications Conference (SIU), 18-20 Nisan, Muğla, 1-4.
  • Thorp, W. H. (1967). Analytic Description of the Low‐Frequency Attenuation Coefficient. J. Acoust. Soc. Am., 42:1, 270.
  • Diamant, R., Chorev, L. (2005). Emulation System for Underwater Acoustic Channel. International Undersea Defence Technology Europe conference, 20-23 Haziran, Amsterdam, 2-6.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Ali Çavuşlu 0000-0002-8736-3845

Mehmet Altuncu 0000-0002-2948-3937

Hikmetcan Özcan 0000-0002-7146-203X

Fidan Kaya Gülağız 0000-0003-3519-9278

Suhap Şahin 0000-0003-1340-8972

Publication Date June 28, 2020
Submission Date March 25, 2020
Acceptance Date June 9, 2020
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

APA Çavuşlu, M. A., Altuncu, M., Özcan, H., Kaya Gülağız, F., et al. (2020). Sualtı Haberleşmede Çok Yolluluğun Bant Genişliği, Kapasite ve İletim Gücü Üzerindeki Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 404-420. https://doi.org/10.35193/bseufbd.706560