Year 2020, Volume 7 , Issue 2, Pages 588 - 608 2020-12-30

Silika Aerojel katkılı Alkali-Aktive Edilmiş Uçucu Kül Harçlarının Mekanik, Por Yapısı ve Mikro Yapı Özellikleri
Mechanical, Pore Structure and Microstructural Properties of Alkali-Activated Fly Ash Mortars Containing Silica Aerogel

Levent BOSTANCI [1]


Silika aerojeller, çimento matrisine dâhil edildiklerinde yüksek poroziteleri aracılığıyla çimento esaslı malzemelerin akustik ve termal yalıtım performanslarına katkı sunabilmektedirler. Silika aerojel partikülleri, yüksek porozitelerine rağmen mekanik zorlamalar altında ihmal edilemeyecek düzeyde mekanik özellikler de gösterebilmektedirler. Bu çalışmada çimento ağırlığınca düşük katkı oranlarında (%0.25 ve %0.50) çimento matrisine dâhil edilen silika aerojellerin alkali – aktive edilmiş uçucu kül harçlarının mekanik, por yapısı ve mikro yapı özelliklerine olan etkisi araştırılmıştır. Deneysel çalışmadan elde edilen sonuçlar, ortalama 20 MPa basınç dayanımına sahip uçucu kül harçlarının basınç etkisi altındaki tokluk ve pik – sonrası tokluk kapasitelerinin sırasıyla yaklaşık %27 ve %70 düzeylerinde artabileceğini ortaya koymaktadır. Harç numunelerinin por yapısında mikro ve kapiler boyuttaki por çaplarının değişimine bağlı olarak elde edilen tokluk kazancı, gelecekte eşdeğer basınç dayanımları altında deformasyon davranışı geliştirilmiş silika aerojel katkılı blok elemanların üretimi için yenilikçi bir tasarım fikrini ortaya koymaktadır.

Inclusion of silica aerogels in cement matrix can lead to an enhancement in thermal and acoustic properties of cement – based materials due to the high porosity values of silica aerogel particles. Despite their high porosity values, silica aerogel particles can also show sufficient mechanical performance under stress. In this study, mechanical, pore structure and microstructure properties of alkali – activated fly ash mortars containing a small amount of silica aerogel powder (0.25% and 0.50% of binder, by weight) were investigated. The results obtained from the experimental study reveal that the compressive toughness and compressive post-peak toughness capacities of fly ash mortars with an average compressive strength of 20 MPa could increase by about 27% and 70%, respectively. Toughness development obtained via the change in the micro and capillary pore formation in the pore structure of the mortar samples presents an innovative design idea for the production of silica aerogel-incorporated mortar blocks with improved deformation behavior under equivalent compressive stress.

  • Karahan, O. (2017).Transport properties of high volume fly ash or slag concrete exposed to high temperature, Construction and Building Materials, 152, 898–906.
  • Hwang,C.-L, Huynh, T.-P. (2015).Investigation into the use of unground rice husk ash to produce eco-friendly construction bricks, Construction and Building Materials, 93, 335–341.
  • Aliabdo, A.A.,Abd Elmoaty, A. E. M., Aboshama, A.Y. (2016).Utilization of waste glass powder in the production of cement and concrete, Construction and Building Materials, 124, 866–877.
  • Bostanci, L.,Sola, O.C. (2018).Mechanical properties and thermal conductivity of aerogel incorporated alkali-activated slag mortars, Adances in Civil Engineering, 2018,1 – 9.
  • Zuo, Y.,Nedeljković, M.,Ye, G. (2019). Pore solution composition of alkali-activated slag/fly ash pastes, Cement and Concrete Research, 115, 230–250.
  • Provis, J.L.,Bernal, S.A., (2014).Geopolymers and related alkali-activated materials, Annual Review of Materials Research, 44, 299–327.
  • ASTM C618-01, (2001). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. American Society for Testing and Materials.
  • Bankowski, P.,Zou, L.,Hodges, R. (2004). Reduction of metal leaching in brown coal fly ash using geopolymers, Journal of Hazardous Materials. 114, 59–67.
  • Antiohos, S.K.,Tsimas, S. (2007).A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems, Waste Management, 27, 675–683.
  • Zhuang, X. Y.,Chen, L.,Komarneni, S.,Zhou, C. H.,Tong, D. S.,Yang, H. M.,Yu, W. H.,Wang, H. (2016).Fly ash-based geopolymer: clean production, properties and applications, Journal of Cleaner Production, 125, 253–267.
  • Kaur, M.,Singh, J.,Kaur, M. (2018). Microstructure and strength development of fly ash-based geopolymermortar: Role of nano-metakaolin, Construction and Building Materials, 190, 672–679.
  • Akçaozoglu, S.,Atis, C.D. (2011).Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates, Construction and Building Materials, 25, 4052–4058.
  • Karahan, O.,Atis, C. D. (2011).The durability properties of polypropylene fiber reinforced fly ash concrete, Materials and Design, 32, 1044–1049.
  • Yerremala, A.,Chandurdu, R.,Desai, B. (2012).Influence Of Fly Ash Replacement On Strength Properties Of Cement Mortar, International Journal of Engineering Science and Technology, 4, 3657–3665.
  • Al Zaidi, A.K.A.,Demirel, B.,Atis, C. D. (2019).Effect of different storage methods on thermal and mechanical properties of mortar containing aerogel, fly ash and nano-silica, Construction and Building Materials, 199, 501–507.
  • Farina, I.,Modano, M.,Zuccaro,G., Goodall, R.,Colangelo, F. (2018).Improving flexural strength and toughness of geopolymer mortars through additively manufactured metallic rebars, Composites Part B, 145, 155–161.
  • Siad, H.,Lachemi, M.,Sahmaran, M.,Mesbah, H. A.,Hossain, K. M. A. (2018).Use of recycled glass powder to improve the performance properties of high volume fly ash-engineered cementitious composites, Construction and Building Materials, 163, 53–62.
  • Guades, E.J. (2016).Experimental investigation of the compressive and tensile strengths of geopolymer mortar: The effect of sand/fly ash (S/FA) ratio, Construction and Building Materials, 127, 484–493.
  • Xu, F.,Deng, X., Peng, C.,Zhu, J., Chen, J. (2017). Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites, Construction and Building Materials, 150, 179–189.
  • Morsy, M. S.,Shoukry, H.,Mokhtar, M. M.,Ali, A. M., El-Khodary, S. A. (2018). Facile production of nano-scale metakaolin: An investigation into its effect on compressive strength, pore structure and microstructural characteristics of mortar, Construction and Building Materials, 172, 243–250.
  • X. Wu, M. Fan, J. F. Mclaughlin, X. Shen, G. Tan, A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique, Powder Technology 323 (2018) 310–322.
  • Ibrahim, M.,Biwole, P. H.,Wurtz, E.,Achard, P. (2014). A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating, Building and Environment, 81, 112-122.
  • Hanif, A.,Diao, S.,Lu, Z.,Fan, T.,Li, Z. (2016).Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres – Mechanical and thermal insulating properties, Construction and Building Materials, 116, 422–430.
  • Liu, Z.-h.,Ding, Y.-d.,Wang, F.,Deng, Z.-p. (2016).Thermal insulation material based on SiO2 aerogel, Construction and Building Materials, 122, 548–555.
  • Garrido, R.,Silvestre, J. D.,Flores-Colen, I. (2017.Economic and Energy Life Cycle Assessment of aerogel-based thermal renders, Journal of Cleaner Production, 151, 537-545.
  • Bostanci, L.,Ustundag, O.,Sola, O.C.,Uysal, M. (2019).Effect of various curing methods and addition of silica aerogel on mortar properties, Gradevinar, 71, 651– 661.
  • Cuce, E.,Cuce, P.M.,Wood, C.J.,Riffat, S.B. (2014).Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings, Construction and Building Materials, 77, 28–39.
  • Westgate, P.,Paine, K.,Ball, R. J. (2018).Physical and mechanical properties of plasters incorporating aerogel granules and polypropylene monofilament fibres, Construction and Building Materials, 158, 472–480.
  • Haranath, D. (1196). Aerogel the lightest solid known, Resonance, 64-68.
  • Ng, S., Jelle, B. P., Sandberg, L. I. C., Gao, T., Wallevik, Ó. H. (2015). Experimental investigations of aerogel-incorporated ultra-high performance concrete, Construction and Building Materials, 77, 307–316.
  • TS EN 196-1, (2016). Çimento deney metotları- Bölüm 1: Dayanım tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-11, (2000). Kagir harcı- Deney metotları- Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 771-2, (2015). Kâgir birimler- Özellikler- Bölüm 2: Kireç kumtaşı kâgir birimler.Türk Standartları Enstitüsü, Ankara.
  • Atis, C. D.,Karahan, O. (2009). Properties of steel fiber reinforced fly ash concrete, Construction and Building Materials, 23, 392–399.
  • Zeng, Q.,Mao, T.,Li, H.,Peng, Y. ,82018).Thermally insulating lightweight cement-based composites incorporating glass beads and nano-silica aerogels for sustainably energy-saving buildings, Energy & Buildings, 174, 97–110.
  • Oltulu, M.,Sahin, R. (2014).Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders, Construction and Building Materials, 53, 658–664.
  • Lee, N.K.,Koh, K.T.,An, G.H.,Ryu, G.S. (2017).Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures, Ceramics International, 43, 2471–2480.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-4686-9102
Author: Levent BOSTANCI (Primary Author)
Institution: BEYKENT ÜNİVERSİTESİ
Country: Turkey


Dates

Application Date : April 13, 2020
Acceptance Date : July 17, 2020
Publication Date : December 30, 2020

APA Bostancı, L . (2020). Silika Aerojel katkılı Alkali-Aktive Edilmiş Uçucu Kül Harçlarının Mekanik, Por Yapısı ve Mikro Yapı Özellikleri . Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi , 7 (2) , 588-608 . DOI: 10.35193/bseufbd.719911