Year 2021, Volume 8 , Issue 1, Pages 159 - 166 2021-06-30

Yüksek Enerjili Rölativistik Çarpışmalarda Baryonik Rezonans Oluşumları
Production of Baryonic Resonances at High Energy Relativistic Collisions

Serpil YALÇIN KUZU [1] , Ayben KARASU UYSAL [2]


Baryonik rezonanslar üç kuarktan oluşan uyarılmış durumlardır. Kütle, rezonans genişliği ve ürün bolluğu gibi karakteristik özellikleri ortam tarafından etkilenebilir, böylece bu parçacıkların ölçümleri ile rölativistik ağır iyon çarpışmaları sonucu oluşan sistemin dinamiği araştırılabilir. Çok kısa ortalama ömre(τ ~ 10-23s) sahip olan baryonik rezonanslar, yüksek enerjili çarpışmalarda oluşan ortamın kimyasal donma noktası ile kinetik donma noktası arasında (i) bozunabilir, (ii) yeniden saçılabilir ve (iii) yeniden üretilebilirler. Bu sebeple bu parçacıkların karakteristik özelliklerinin incelenmesi çarpışmalarda oluşan ve maddenin yeni hali olarak tanımlanan Kuark Gluon Plazma (KGP) ve onu takip eden hadronizasyon safhaları hakkında bilgi verebilir. Ayrıca bu rezonansların farklı yüksek enerjili çarpışma sistemlerinde incelenmesi oluşan ortam boyutlarının rezonans üretimi üzerine etkisini açıklayabilir. Bu çalışmada baryonik rezonanslardan biri ve protonun uyarılmış hali olan Δ(1232)++ rezonansları DPMJET-III olay üreticisi ile 5.02 TeV enerjili proton kurşun (p-Pb) çarpışmaları için incelenmiştir. Ayrıca elde edilen değerler deneysel sonuçlar ile karşılaştırılmıştır. Farklı rölativistik çarpışma sistemlerinde oluşan ortamın bu parçacık üzerine etkisi değerlendirilmiştir.

Baryonic resonances, composed of three quarks, are excited states of the corresponding ground state particles. Modification of their properties, such as mass, width, and yield by the medium make them to be used to investigate the dynamics of the system formed in relativistic heavy ion collisions. Due to having very short lifetime (τ ~10-23s) these particles may (i) decay, (ii) rescatter, and (iii) regenerate between chemical and kinetic freeze-out temperatures of created medium in high energy collisions. Therefore, studying their characteristic properties provides information about quark gluon plasma (QGP), the new state of matter, and the following phase, hadronization, of the medium formed in collisions. Measurement of these resonances in different high energy collision systems allows explaining system size effect on resonance production mechanism. In this work, Δ (1232) ++ resonance, which is one of the baryonic resonances and excited state of proton, were studied with DPMJET-III event generator for proton lead (p-Pb) collisions at the energy of 5.02 TeV. In addition, derived values are compared with the experimental results and the effect of the medium formed in different relativistic collisions on the resonances is discussed.

  • LHC Study Group (1995). The Large Hadron Collider Conceptual Design Report, CERN/AC 95-05.
  • Bryant, P., & Evans L. (2008). LHC Machine. Journal of Instrumentation, 3, S08001. doi: 10.1088/1748 0221/3/08/S08001.
  • Harrison, M., Ludlam, T., & Ozaki, S. (2003). RHIC Project over view. Nuclear Instruments and Methods in Physics Research A, 499, 235–244.
  • ALICE Collab.(2014). Performance of the ALICE Experiment at the CERN LHC. International Journal of Modern Physics A,29, 1430044. doi:10.1142/S0217751X14300440
  • STAR Collab.(2003). STAR detector over view. Nuclear Instruments and Methods in Physics Research A, 499, 624–632. doi: 10.1016/S0168-9002(02)01960-5.
  • PHENIX Collab.(2003). PHENIX detector over view. Nuclear Instruments and Methods in Physics Research A,499, 469–479.
  • Tawfik, A., & Shalaby, A. G. (2015). Balance Function in High-Energy Collisions. Advances in High Energy Physics, 186812.
  • Markert, C. (2005). What do we learn from Resonance Production in Heavy Ion Collisions? Journal of Physics G: Nuclear and Particle Physics, 31 (4), 169–178.
  • Torrieri, G., & Rafelski, J. (2001). Strange Hadron Resonances as a Signature of Freeze-Out Dynamics. Physic sLetters B, 509, 239–245.
  • Bleicher, M., & Aichelin, J. (2002). Strange resonance production: Probing chemical and thermal freeze-out in relativistic heavy ion collisions. Physics Letters B, 530(1-4), 81-87.
  • Gyulassy, M. (2003). The QGP discovered at RHIC. Paper presented at the Proceedings Proceedings of the NATO Advanced Study Institute: Structure and Dynamics of Elementary Matter, Kemer, Turkey.
  • PHENIX Collab. (2005). Formationof dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration. Nuclear Physics A, 757 (1–2), 184–283.
  • PHOBOS Collab. (2005).The PHOBOS perspective on discoveries at RHIC. Nuclear Physics A, 757(1–2),28–101.
  • STAR Collab.(2005). Experimental and theoretical challenges in the search for the quark–gluonplasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nuclear Physics A, 757, 102–183.
  • BRAHMS Collab. (2005). Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nuclear Physics A, 757 (1–2), 1–27.
  • Particle Data Group Collab. (2018). Review of particle physics. Physics. Review D,98, 030001.
  • Bleicher, M., & Aichelin, J. (2002). Strange resonance production: Probing chemical and thermal freeze-out in relativistic heavy ion collisions. Physics Letters B, 530(1-4), 81-87.
  • STAR Collab. (2008). Hadronic resonance production in d+Aucollisions at √sNN= 200 GeV at RHIC. Physics Review C, 78, 044906. doi:10.1103/PhysRevC.78.044906
  • Particle Data Group Collab.(2014).Chinese Physics C, 38, 090001.
  • Hote, D. (1994). About Resonance Signal Extraction From Multiparticle Data: Combinatorics and Event Mixing Methods. Nuclear Instruments and Methods in PhysicsResearchA,337, 544–556.
  • STAR Collab.(2005). K*(892) Resonance Production in Au+Au and p+p Collisions at √s=200GeV at STAR. Physics Review C, 71, 064902.
  • Rapp,R. (2003).Pi+ Pi- Emission in High-Energy Nuclear Collisions. Nuclear Physics A, 725, 254–268.
  • Shuryak, E. V., &Brown, G. (2003).Matter-induced modification of resonances at RHIC freezeout. Nuclear Physics A, 717, 322–335.
  • STAR Collab.(2002). Coherent ρ0 Production in Ultra peripheral Heavy-Ion Collisions. Physics Review Letter, 89, 272302.
  • Kolb, P. F., &Prakash, M.(2003). Spectroscopy of resonance decays in high-energy heavy-ion experiments. Physics Review C, 67,044902.
  • ALICE Collab.(2012). Study of short-lived resonances with the ALICE experiment at the LHC.Paper presented at the Proceedings of the 2nd International Conference on Particle Physics: In Memoriam Engin Arik and Her Colleagues, Istanbul , Turkey.
  • Roesler, S. ,Engel, R., & Ranft,J.(2000). The Monte Carlo eventgeneratorDPMJET-III. SLAC-PUB-8740, 1033–1038.
  • Ranft, J. (1995). Dual parton model at cosmic ray energies. Physics Review D, 51 (1), 64–84.
  • Ranft, J. (1999). DPMJET version II.5: Sampling of hadron-hadron, hadron-nucleus and nucleus-nucleus interactions at accelerator and cosmic ray energies according to the two-component dual parton model: Code manual, Preprint University of Siegen SI-99-6.
  • Engel, R., Ranft, J., & Roesler, S. (1997). Photo production off nuclei and point like photon interactions. I. Cross sections and nuclear shadowing. Physics Review D, 55, 6957.
  • Roesler, S., Engel, R., & Ranft, J. (1998). Photo production off nuclei: Particle and jet production. Physics Review D, 57, 2889.
  • Engel, R. (1995). Photo production within the two component dual parton model. 1. Amplitudes and cross-sections. Zeitschriftfür Physik C Particles and Fields, 66, 203–214.
  • Engel, R., & Ranft, J. (1996). Hadronic photon-photon interactions at high energies. Physics Review D, 54, 4244.
  • Glauber, R. J. (1959). Lectures in Theoretical Physics. Interscience, New York, Volume 1, 315.
  • Gribov, V. N. (1969). Glauber corrections and the interaction between high-energy hadrons and nuclei. Soviet Physics - The Journal of Experimental and Theoretical Physics, 29, 483.
  • Gribov, V. N. (1970). Interaction of gamma quanta and electrons with nuclei at high-energies. Soviet Physics - The Journal of Experimental and Theoretical Physics, 30, 709.
  • Capella, A., Sukhatme, U., Tan, C.I., & Tran Thanh Van, J. (1994). Dual parton model. Physics Reports, 236 (4–5), 225–329.
  • Hees, H., Rapp, R. (2018). Delta(1232) and Nucleon Spectral Functions in Hot Hadronic Matter.Physics Letter B,606, 59–66.
  • Weil, J. (2008). Dilepton Production inElementary Nuclear Reactions within a BUU Transport Model. Diploma Tezi, Justus Liebig University, Teorik Fizik Enstitüsü, Giessen.
  • Sjostrand, T., Mrenna S. & Skands P. (2006). PYTHIA 6.4 Physics and Manual. Journal of High Energy Physics, 026. doi:10.1088/1126-6708/2006/05/026
Primary Language tr
Subjects Basic Sciences
Journal Section Articles
Authors

Orcid: 0000-0001-8905-8089
Author: Serpil YALÇIN KUZU (Primary Author)
Institution: FIRAT ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0001-6297-2532
Author: Ayben KARASU UYSAL
Institution: KTO KARATAY ÜNİVERSİTESİ
Country: Turkey


Supporting Institution TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU (TÜBİTAK), Türkiye Atom Enerjisi Kurumu (TAEK)
Project Number 119F302 numaralı TÜBİTAK-1001 projesi, 2019TAEK(CERN)A5.H1.F5-23
Thanks Bu çalışma 119F302 numaralı TÜBİTAK-1001 projesi ve 2019TAEK(CERN)A5.H1.F5-23 numaralı TAEK projesi ile desteklenmiştir.
Dates

Application Date : January 5, 2021
Acceptance Date : March 23, 2021
Publication Date : June 30, 2021

APA Yalçın Kuzu, S , Karasu Uysal, A . (2021). Yüksek Enerjili Rölativistik Çarpışmalarda Baryonik Rezonans Oluşumları . Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi , 8 (1) , 159-166 . DOI: 10.35193/bseufbd.854296