Year 2021, Volume 8 , Issue 1, Pages 345 - 355 2021-06-30

Grafen Oksit Tabakalanma Derecesinin Grafen Film Özelliklerine Etkisi
The Effect of Graphene Oxide Exfoliation Degree on Graphene Film Properties

Nevin ATALAY GENGEÇ [1]


Yeni bir material olan grafeneolan ilgi, grafenin eşsiz mekanik, elektriksel ve termal özelliklerinden dolayı gün geçtikçe artmaktadır. Grafen film üretiminde, grafitin bir dizi kimyasal işlemi sonucunda sentezlenen grafitoksit (GRO), temel malzeme olarak kullanılmıştır. Bu çalışmada öncelikle, de-iyonizesu (DI-su) ile tekrar tekrar yıkanmış GRO karışımından farklı ultra ses sürelerinde hazırlanan tabakalanma dereceleri farklı grafen oksit (GO) dispersiyonları hazırlanmıştır. Ardından, hazırlanan GO dispersiyonları ile döküm yoluyla aynı film kalınlığında GO filmleri üretilmiştir. Farklı tabakalanma derecesine sahip GO filmler 1100 oC’de termal olarak grafene indirgenmiş ve indirgenmiş grafen film özelliklerindeki değişim incelenmiştir. Termal olarak indirgenmiş grafen ve GO filmlerin karakterizasyonu için XRD, SEM ve FTIR ölçümleri yapılmıştır. GO filmleri için 8 saatlik ultra ses süresinde maksimum tabakalanma derecesi elde edilirken, GO filmlerinin 1100 oC'de termal olarak indirgenmesi ile 3 saatlik ultra ses süresinde dahi maksimum tabakalanma derecesi elde edilmiştir.

Interest in graphene, which is a new material, is increasing day by day due to its unique mechanical, electrical, and thermal properties. Graphite oxide (GRO), which is synthesized as a result of a series of chemical processes of graphite, was used as the primary material in the production of graphene film. In this study, firstly, graphene oxide (GO) dispersions with different exfoliation degrees were prepared from de-ionized water (DI-water) and repeatedly washed GRO mixture at different ultrasound times. Then, GO films with the same film thickness were produced by casting of the prepared GO dispersions. GO films with different exfoliation degrees were thermally reduced to graphene at 1100 oC, and the change in reduced graphene film (RGO) properties was investigated. XRD, SEM, and FTIR measurements were made for the characterization of thermally reduced graphene and GO films. While the maximum degree of exfoliation was obtained for GO films in 8 hours of ultrasound, the maximum degree of exfoliation was obtained even in 3 hours of ultrasound duruationby thermal reduction of GO films at 1100 oC.

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666-669.
  • Li, D., Kaner, R.B. (2008). Graphene-based materials. Science, 320, 1170-1171.
  • Zhao, N., Cheng, X. N., Yang, J., Yang, M. X., Zheng, S.H., Zhou, Y. Z. (2014). Experimental study on the preparation, characterization and conductivity improvement of reduced graphene-oxide papers. Journal of Physics and Chemistry of Solids, 75, 1141-1146.
  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.
  • Wang, H., Yuan, X., Wu, Y., Huang, H., Peng, X., Zeng, G., Zhong, H., Liang, J., Ren, M. M. (2013). Graphene-based materials Fabrication, characterization and application for the decontamination of waste water and waste gas and hydrogen storage/generation. Advances in Colloid and Interface Science, 195-196, 19-40.
  • Bai, H., Li, C., Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23, 1089-1115.
  • Hummers J. W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80,1958.
  • Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., Gorchinskiy, A. D. (1999). Layer-by-Layer Assembly of Ultra thin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials, 11, 771-778.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4, 4806-4814.
  • Botas, C., Alvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaria, R., Romasanta, L. J., Verdejo, R., Lopez-Manchado, M. A., Menendez, R. (2013). Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon, 65, 156-164.
  • Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M., Ohba, M. (2004). Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon, 42, 2929-2937.
  • Wang, H., Robinson, J. T., Li, X., Dai, H. (2009). Solvo thermal reduction of chemically exfoliated graphene sheets. Journal of American Chemical Society, 131, 9910-9911.
  • Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A., Tascon, J. M. D. (2008). Graphene Oxide Dispersions in Organic Solvents. Langmuir, 24, 10560-10564.
  • Eda, G., Fanchini, G., Chhowalla, M. (2008). Large-area ultra thin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270-274.
  • Botas, C., Perez-Mas, A. M., Alvarez, P., Santamaria, R., Granda, M., Blanco, C., Menendez, R., (2013). Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon, 63, 562 -592.
  • Si, Y., & Samulski, E. T. (2008). Synthesis of Water Soluble Graphene. Nano Letters, 8, 1679-1682, 2008.
  • Hong, J. Y., & Jang, J. (2012). Highly stable, concentrated dispersions of graphene oxide sheets and their electro-responsive characteristics. Soft Matter, 8, 7348-7350.
  • Valles, C., Young, R. J., Lomax, D. J., Kinloch, I. A. (2014). The rheological behaviour of concentrated dispersions of graphene oxide. Journal of Materials Science, 49, 6311-6320.
  • Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710.
  • Liu, Z., Li, Z., Xu, Z., Xia, Z., Hu, X., Kou, L., Peng, L., Wei, Y., Gao, C. (2014). Wet-Spun Continuous Graphene Films. Chemistry of Materials, 26, 6786-6795.
  • Li, X., Yang, T., Yang, Y., Zhu, J., Li, L., Alam, F. E., Li, X., Wang, K., Cheng, H., Lin, C. T., Fang, Y., Zhu, H. (2016). Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application. Advanced Functional Materials, 26, 1322-1329.
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558-1565, 2007.
  • Zhao, J., Pei, S., Ren, W., Gao, L., Cheng, H. M. (2010). Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano, 4, 5245-5252.
  • Bae, S. Y., Jeon, I. Y., Yang, J., Park, N., Shin, H. S., Park, S., Ruoff, R. S., Dai, L., Baek, J. B. (2011). Large-Area Graphene Films by Simple Solution Casting of Edge-Selectively Functionalized Graphite. ACS Nano, 5, 4974-4980.
  • Cruz-Silva, R.,Morelos-Gomez, A.,Kim, H. I.,Jang, H. K.,Tristan, F.,Vega-Diaz, S.,Rajukumar, L. P.,Elias, A. L., Perea-Lopez, N., Suhr, J., Endo, M., Terrones, M. (2014). Super-stretchable Graphene Oxide Macroscopic Fibers with Outstanding Knotability Fabricated by Dry Film Scrolling. ACS Nano, 8, 5959-5967.
  • Yang, H., Cao, Y., He, J., Zhang, Y., Jin, B., Sun, J.L., Wang, Y., Zhao, Z. (2017). Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices. Carbon, 115, 561-570.
  • Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457-460.
  • Ye, S., Chen, B., Feng, J. (2015). Fracture Mechanism and Toughness Optimization of Macroscopic Thick Graphene Oxide Film. Nature Scientific Reports, 5,13102-13112.
  • Dreyer, D. R., Park, S., Bielawski, C. W., Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228-240.
  • Dong, X. C., Wang, X., Wang, L., Song, H., Zhang, H., Huang, W., Chen, P. (2012). 3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Applied Materials & Interfaces, 4, 3129-3133.
  • Qiu, H.J., Guan, Y.X., Luo, P., Wang, Y. (2017). Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosensors and Bioelectronics, 89, 85-95.
  • Chen, H., Muller, M. B., Gilmore, K. J., Wallace, G. G., Li, D. (2008). Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced Materials, 20, 3557-3561.
  • Wang, C., Li, D., Too, C.O., Wallace, G.G. (2009). Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chemistry of Materials, 21, 2604-2606.
  • Liu, F., Song, S., Xue, D., Zhang, H. (2012). Folded Structured Graphene Paper for High Performance Electrode Materials. Advanced Materials, 24, 1089-1094.
  • Wang, C., Wang, X., Wang, Y., Chen, J., Zhou, H., Huang, Y. (2015). Macroporous free-standing sulfur/reduced graphene oxide paper as cathode electrode for lithium-sulfur battery. Nano Energy, 11, 678-686.
  • Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prudhomme, R.K., Car, R., Saville, D.A., Aksay, I.A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry C, 110, 8535-8539.
  • Gonzalez, Z., Botas, C., Alvarez, P., Roldan, S., Blanco, C., Santamaria, R., Granda, M., Menendez, R. (2012). Thermally reduced graphite oxide as positive electrode in Vanadium redox flow batteries. Carbon, 50, 828-834.
  • Botas, C., Alvarez, P., Blanco, C., Santamaria, R., Granda, M., Gutierrez, M. D., Rodrİguez-Reinoso, F., Menendez, R. (2013). Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation-reduction of graphite oxide. Carbon, 52, 476-485.
  • Pei, S., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50, 3210-3228.
  • Partoens, B., & Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Physical Review B, 74, 075404-1-11.
  • Xu, M., Fujita, D., Gao, J., Hanagata, N. (2010). Auger Electron Spectroscopy: A Rational Method for Determining Thickness of Graphene Films. ACS Nano, 4, 2937-2945.
  • Chen, X., Chen, X., Zhang, F., Yang, Z., Huang, S. (2013). One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/a-Ni(OH)2 composites for high performance electrochemical supercapacitor. Journal of Power Sources, 243, 555-561.
  • Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S. (2010). Reduction of graphene oxide via L-ascorbic acid. Chem.Commun., 46, 1112-1114.
Primary Language en
Subjects Engineering, Basic Sciences
Journal Section Articles
Authors

Orcid: 0000-0003-0993-4398
Author: Nevin ATALAY GENGEÇ (Primary Author)
Institution: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ
Country: Turkey


Supporting Institution Bilecik Şeyh Edebali Üniversitesi, BAP koordinatörlüğü
Project Number 2019-01.BŞEÜ.03-07
Thanks This work was supported by the Bilecik Şeyh Edebali University Scientific Research Projects (BAP) fund within the scope of general-purpose projects (Project No: 2019-01.BŞEÜ.03-07).
Dates

Application Date : March 21, 2021
Acceptance Date : May 17, 2021
Publication Date : June 30, 2021

APA Atalay Gengeç, N . (2021). The Effect of Graphene Oxide Exfoliation Degree on Graphene Film Properties . Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi , 8 (1) , 345-355 . DOI: 10.35193/bseufbd.900732