Research Article
BibTex RIS Cite

AZ Serisi Döküm Magnezyum Alaşımlarının Termal Özellikleri

Year 2022, Volume: 9 Issue: 1, 471 - 478, 30.06.2022
https://doi.org/10.35193/bseufbd.1078439

Abstract

Bu çalışmada, AZ serisi döküm magnezyum alaşımlarının ısıl davranışları (ısıl yayılma ve ısıl iletkenlik) üzerine deneysel bir araştırma sunmaktadır. Deneyde kullanılan alaşım bileşenlerinden Al’nin değişimi (ağırlıkça % 1-9 arasında) alaşımların ısıl yayılma ve ısıl iletkenliklerini nasıl etkilediğini, yoğunluk ve sertlik üzerindeki değişimler incelenmiştir. Alaşımların mikroyapı değişimlerinin ve mikroyapıda görülen intermetalik fazın (Mg17Al12) alaşımların ısıl yayınım, ısıl iletkenlik, yoğunluk ve sertlik üzerine etkisi olduğu görülmüştür. Alaşımın ısıl özellikleri, alaşımdaki Al içeriğine bağlı olarak değişmiştir. Alaşımların termal özellikleri sıcaklık artışına bağlı olarak (sıcaklık değişimi 25 °C- 400 °C arası) artmıştır. En yüksek termal yayılma AZ61 alaşımında gözlenmiştir.

References

  • Friedrich, H. E. & Mordike, B. L. (2006). Magnesium Technology (Vol.12). Springer-Verlag. Berlin.
  • Mehta, D. S., Masood, S. H. & Song, W. Q. (2004). Investigation of wear properties of magnesium and aluminum alloys for automotive applications. Journal of Materials Processing Technology, 155, 1526-1531.
  • Tönshoff, H. K., Denkena, B., Winkler, R. J. & Podolsky, C. (2006). Machining, magnesium technology, metallurgy, design data, applications. Verlag Berlin Heidelberg: Springer, 398.
  • Mordike, B. L. & Ebert, T. (2001). Magnesium: properties-applications-potential. Materials Science and Engineering: A, 302(1), 37-45.
  • Unal, M. (2008). An Investigation of Casting Properties of Magnesium Alloys. PhD Thesis. Ankara, Gazi University, Institute of Science and Technology.
  • Akyüz, B. (2014). Comparison of the machinability and wear properties of magnesium alloys. The International Journal of Advanced Manufacturing Technology, 75(9), 1735-1742.
  • Akyüz, B. (2018). Influence of Al content on machinability of AZ series Mg alloys. Transactions of Nonferrous Metals Society of China, 23(8), 2243-2249.
  • Jambor, A. & Beyer, M. (1997). New cars - new materials. Materials & Design, 18, 4–6, 203–209.
  • Li, Y., Wen, C., Mushahary, D., Sravanthi, R., Harishankar, N., Pande, G., & Hodgson, P. (2012). Mg–Zr–Sr alloys as biodegradable implant materials. Acta biomaterialia, 8(8), 3177-3188.
  • Musfirah, A. H., & Jaharah, A. G. (2012). Magnesium and aluminum alloys in automotive industry. J. Appl. Sci. Res, 8(9), 4865-4875.
  • Mutua, J., JM, K., Rading, G. O., & Kimotho, J. K. (2011). Use of magnesium alloys in optimizing the weight of automobile: Current trends and opportunities.
  • Tomac, N., Tønnesen, K. & Mikac, T. (2008). Study of influence of aluminum content on machinability of magnesium alloys, Strojarstvo, 50(6), 363-367.
  • Tönshoff, H. K. & Winkler, J. (1997). The influence of tool coatings in machining of magnesium. Surface and Coating Technology, 94-95, 610-616.
  • Uhríčik, M., Dresslerová, Z., Palček, P., Chalupová, M., Trojanová, Z., & Hanusová, P. (2020). Amplitude Dependent Internal Friction in Strained Magnesium Alloys of AZ Series. Crystals, 10(7), 608.
  • Kuczmaszewski, J., Zagorski, I., Gziut, O., Legutko, S. & Krolczyk, G. M. (2017). Chip fragmentation in the milling of AZ91HP magnesium alloy. Strojniski Vestnik/Journal of Mechanical Engineering, 63(11), 628-642.
  • Zagórski, I. & Kuczmaszewski, J. (2016). Study of chip ignition and chip morphology after milling of magnesium alloys. Advances in Science and Technology Research Journal, 10(32).
  • Hou, J., Zhao, N. & Zhu, S. (2011). Influence of cutting speed on flank temperature during face milling of magnesium alloy. Materials and Manufacturing Processes, 26(8), 1059-1063. [18] Danish, M., Ginta, T. L., Habib, K., Carou, D., Rani, A. M. A. & Saha, B. B. (2017). Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. The International Journal of Advanced Manufacturing Technology, 91(5), 2855-2868.
  • Liu, K., Li, X. P. & Liang, S. Y. (2007). The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv. Manuf. Technology, 33, 875-884.
  • Tekumalla, S. & Gupta, M. (2017). An insight into ignition factors and mechanisms of magnesium based materials: A review. Materials & Design, 113, 84-98.
  • Lee, S., Ham, H. J., Kwon, S. Y., Kim, S. W. & Suh C. M. (2013). Thermal conductivity of magnesium alloys in the temperature range from 125 °C to 400 °C. International Journal of Thermophysics, 34(12), 2343-2350.
  • Rudajevová, A. & Lukáč, P. (2005). Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Materials Science and Engineering: A, 397(1-2), 16-21.
  • Yamasaki, M., & Kawamura, Y. (2009). Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase. Scripta Materialia, 60(4), 264-267.
  • Cengel, Y. A. & Ghajar, A. J. (2015). Heat and Mass Transfer: Fundamentals and Applications (Fifth Edition), Mc Graw Hill., New York.
  • Chunming, W., Yungui, C., Sufen, X., Wucheng, D. & Xia, L. (2013). Thermal Conductivity and Mechanical Properties of as-Cast Mg-3Zn-(0.5∼ 3.5) Sn Alloys. Rare Metal Materials and Engineering, 42(10), 2019-2022.
  • Tritt, T.M. (2005). Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, 290.

Thermal properties of AZ series cast Magnesium alloys

Year 2022, Volume: 9 Issue: 1, 471 - 478, 30.06.2022
https://doi.org/10.35193/bseufbd.1078439

Abstract

In this study, an experimental research on the thermal behavior (thermal diffusion and thermal conductivity) of cast magnesium alloys of the AZ series is presented. How the variation of Al, one of the alloy components used in the experiment, affects the thermal expansion and thermal conductivity of the alloys (1-9 Al % weight), and the changes on density and hardness were investigated. It has been observed that the microstructure changes of the alloys and the intermetallic phase (Mg17Al12) seen in the microstructure have an effect on the thermal diffusivity, thermal conductivity, density, and hardness of the alloys. The thermal properties of the alloy changed depending on the Al content in the alloy. The thermal properties of the alloys increased depending on the temperature increase (temperature change between 25 °C and 400 °C). The highest thermal dissipation was observed in AZ61 alloy.

References

  • Friedrich, H. E. & Mordike, B. L. (2006). Magnesium Technology (Vol.12). Springer-Verlag. Berlin.
  • Mehta, D. S., Masood, S. H. & Song, W. Q. (2004). Investigation of wear properties of magnesium and aluminum alloys for automotive applications. Journal of Materials Processing Technology, 155, 1526-1531.
  • Tönshoff, H. K., Denkena, B., Winkler, R. J. & Podolsky, C. (2006). Machining, magnesium technology, metallurgy, design data, applications. Verlag Berlin Heidelberg: Springer, 398.
  • Mordike, B. L. & Ebert, T. (2001). Magnesium: properties-applications-potential. Materials Science and Engineering: A, 302(1), 37-45.
  • Unal, M. (2008). An Investigation of Casting Properties of Magnesium Alloys. PhD Thesis. Ankara, Gazi University, Institute of Science and Technology.
  • Akyüz, B. (2014). Comparison of the machinability and wear properties of magnesium alloys. The International Journal of Advanced Manufacturing Technology, 75(9), 1735-1742.
  • Akyüz, B. (2018). Influence of Al content on machinability of AZ series Mg alloys. Transactions of Nonferrous Metals Society of China, 23(8), 2243-2249.
  • Jambor, A. & Beyer, M. (1997). New cars - new materials. Materials & Design, 18, 4–6, 203–209.
  • Li, Y., Wen, C., Mushahary, D., Sravanthi, R., Harishankar, N., Pande, G., & Hodgson, P. (2012). Mg–Zr–Sr alloys as biodegradable implant materials. Acta biomaterialia, 8(8), 3177-3188.
  • Musfirah, A. H., & Jaharah, A. G. (2012). Magnesium and aluminum alloys in automotive industry. J. Appl. Sci. Res, 8(9), 4865-4875.
  • Mutua, J., JM, K., Rading, G. O., & Kimotho, J. K. (2011). Use of magnesium alloys in optimizing the weight of automobile: Current trends and opportunities.
  • Tomac, N., Tønnesen, K. & Mikac, T. (2008). Study of influence of aluminum content on machinability of magnesium alloys, Strojarstvo, 50(6), 363-367.
  • Tönshoff, H. K. & Winkler, J. (1997). The influence of tool coatings in machining of magnesium. Surface and Coating Technology, 94-95, 610-616.
  • Uhríčik, M., Dresslerová, Z., Palček, P., Chalupová, M., Trojanová, Z., & Hanusová, P. (2020). Amplitude Dependent Internal Friction in Strained Magnesium Alloys of AZ Series. Crystals, 10(7), 608.
  • Kuczmaszewski, J., Zagorski, I., Gziut, O., Legutko, S. & Krolczyk, G. M. (2017). Chip fragmentation in the milling of AZ91HP magnesium alloy. Strojniski Vestnik/Journal of Mechanical Engineering, 63(11), 628-642.
  • Zagórski, I. & Kuczmaszewski, J. (2016). Study of chip ignition and chip morphology after milling of magnesium alloys. Advances in Science and Technology Research Journal, 10(32).
  • Hou, J., Zhao, N. & Zhu, S. (2011). Influence of cutting speed on flank temperature during face milling of magnesium alloy. Materials and Manufacturing Processes, 26(8), 1059-1063. [18] Danish, M., Ginta, T. L., Habib, K., Carou, D., Rani, A. M. A. & Saha, B. B. (2017). Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. The International Journal of Advanced Manufacturing Technology, 91(5), 2855-2868.
  • Liu, K., Li, X. P. & Liang, S. Y. (2007). The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv. Manuf. Technology, 33, 875-884.
  • Tekumalla, S. & Gupta, M. (2017). An insight into ignition factors and mechanisms of magnesium based materials: A review. Materials & Design, 113, 84-98.
  • Lee, S., Ham, H. J., Kwon, S. Y., Kim, S. W. & Suh C. M. (2013). Thermal conductivity of magnesium alloys in the temperature range from 125 °C to 400 °C. International Journal of Thermophysics, 34(12), 2343-2350.
  • Rudajevová, A. & Lukáč, P. (2005). Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Materials Science and Engineering: A, 397(1-2), 16-21.
  • Yamasaki, M., & Kawamura, Y. (2009). Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase. Scripta Materialia, 60(4), 264-267.
  • Cengel, Y. A. & Ghajar, A. J. (2015). Heat and Mass Transfer: Fundamentals and Applications (Fifth Edition), Mc Graw Hill., New York.
  • Chunming, W., Yungui, C., Sufen, X., Wucheng, D. & Xia, L. (2013). Thermal Conductivity and Mechanical Properties of as-Cast Mg-3Zn-(0.5∼ 3.5) Sn Alloys. Rare Metal Materials and Engineering, 42(10), 2019-2022.
  • Tritt, T.M. (2005). Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, 290.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Birol Akyüz 0000-0003-4462-3288

Publication Date June 30, 2022
Submission Date February 24, 2022
Acceptance Date May 29, 2022
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Akyüz, B. (2022). AZ Serisi Döküm Magnezyum Alaşımlarının Termal Özellikleri. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 471-478. https://doi.org/10.35193/bseufbd.1078439