Research Article
BibTex RIS Cite

A New Chemical Method to Predict Grindability Index (HGI) for Limestones

Year 2022, Volume: 9 Issue: 1, 124 - 137, 30.06.2022
https://doi.org/10.35193/bseufbd.997319

Abstract

In this study, limestone samples (a total of 58 sample) were investigated in terms of their grindability and chemical composition. Grindability tests were carried out on standard HGI mill. Limestone samples were collected from two different limestone quarry and they were characterized in terms of their chemical composition. In the order of technological utilization, grindability nature of limestones is as significant as their chemical composition. Chemical composition of the limestone samples from the quarries under investigation differs and so does the grinding index, i.e. HGI (Hardgrove Grinding Index). In the context of this study, chemical composition data of limestone samples were correlated with the results of the grinding tests (HGI values). In addition, abovementioned correlations were provided as graphical demonstrations in this context. After these abovementioned graphical demonstration of the relationships between HGI values and chemical composition data, the role of the each chemical composition item in terms of grindability was understood. Based on this understanding, an empirical formula employing the chemical composition data was proposed to predict HGI.

Thanks

Authors of this study would like to thank to Limestone Quarry Companies’ owners and the operators for providing the samples.

References

  • Šiler, P., Kolarova, I., Bednarek, J., Jana, M., Musil, P., & Opravil, T. (2018). The possibilities of analysis of limestone chemical composition. IOP Conf. Series: Materials Science and Engineering.
  • Folk, R. L. (1959). Practical petrographical classification of limestones. Amer. Ass. Petrol. Geol. Bull., 43(1), 1–38.
  • Folk, R. L. (1962). Spectral subdivision of limestone types. Amer. Ass. Petrol., Geol. Mem., 1, 62–84.
  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. Mem. Amer. Ass. Petrol. Geol., 1, 108–121.
  • Mucsi, G., Rácz Á., Mag G., Antal G., & Csőke B. (2019). Volume based closed-cycle Hardgrovegrindability method. The Mining-Geology-Petroleum Engineering Bulletin, 34(4), 9-17.
  • Todorovic, D., Trumic, M., Andric, L., Milosevic, V., & Trumic, M. (2017). A quick method for bond work index approximate value determination. Physicochem. Probl. Miner. Process., 53(1), 321−332.
  • Bond, F.C., & Maxson, W. L. (1943). Standard grindability tests and calculations. Trans. Soc. Min. Eng. AIME, 153, 362–372.
  • ASTM D409 (1991). Standard Test Method for Grindability of Coal by the Hardgrove Machine Method.
  • Zeisel, H. G. (1953). Schriftenreihe der Zementindustrie. 14, Verein Deutcher Zementwerke, Düsseldorf, 51.
  • Hoşten, Ç. & Gülsün, M. (2004). Reactivity of limestones from different sources in Turkey. Minerals Engineering, 17(1), 97-99.
  • Yin, L. & Guo J. (2011). Study on Wet FGD Limestone Quality, Third International Conference on Measuring Technology and Mechatronics Automation, Shangshai, 605-608.
  • Deniz, V. (2014). Relationships between Bond's grindability (Gbg) and breakage parameters of grinding kinetic on limestone. Powder Technology, 139(3), 208-213.
  • Altun, N.E. (2014). Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control. Fuel Processing Technology, 128, 461-470.
  • Ozkahraman, H.T. (2005). A meaningful expression between bond work index, grindability index and friability value. Minerals Engineering, 18(10), 1057-1059.
  • Seo, J.H., Baek, C. S., Cho, J.S., Ahn, Y.J., Ahn, J.W., & Cho, K.H. (2019). Evaluation and application of grinding index of domestic desulfurization limestone. Journal of Energy Engineering, 28(1), 1-9.
  • Tichanek, F. (2008). Contribution to determination of coal grindability using Hardgrove Method. GeoSci. Eng., LIV (1).
  • Chelgani, S. C., Hower, J. C., Jorjani, E., Mesroghli, Sh., & Bagherieh, A. H. (2008). Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models. Fuel Proc. Technol, 89, 13–20.
  • Sahoo, R.K. (2006). Review: An investigation of single particle breakage tests for coal handling system of the gladstone port, Powder Technology, 161(2), 158-167.
  • Ozbayoglu, G., Ozbayoglu, A. M., & Ozbayoglu, M. E. (2008). Estimation of Hard grove grindability index of Turkish coals by neural networks. Int. J. Miner. Proc., 85, 93–100.
  • Sengupta, A.N. (2002). An assessment of grindability index of coal, Fuel Processing Technology, 76(1) 1-10.
  • Mendis, B.S.M., Jayathunga, T.H.G.S., Madurapperuma, H.H., Rohitha, L.P.S., Dharmarathna, P.G.R., & Hemalal, P.V.A. (2017). Determination of existing relationship amonggrindability, chemical composition and particle size of raw material mix at Aruwakkalu Limestone.
  • Kural, A., & Ozsoy, C. (2004). Identification and control of the raw material bending process in cement industry. International Journal of Adaptation Control Signal Processing, 18(5), 427-442.
  • Frigione, G., Zenone, F. & Esposito, M. V. (1983). The effect of chemical composition on Portland cement clinker grindability. Cement and Concrete Research, 13(4), 483-492.
  • Ürünveren, A., Altıner, M., Kuvvetli, Y., Ural, O. B., & Ural, S. (2020). Prediction of Hard grove grindability index of Afsin-Elbistan (Turkey) Low-grade Coals based on proximate analysis and ash chemical composition by neural networks. International Journal of Coal Preparation and Utilization, 40(10), 701-711.
  • Bilen, M., Kizgut, S., Cuhadaroglu, A., Yilmaz, S., & Toroglu, İ. (2017). Coal grindability and breakage parameters. International Journal of Coal Preparation and Utilization, 37(5), 279-284.
  • Bilen, M., Kızgut, S., Yilmaz, S., Baris, K., & Cuhadaroglu, D. (2018). Grindability of coal changing with burial depth. International Journal of Coal Preparation and Utilization, 38(2), 75-87.
  • Yilmaz, S., & Bilen, M. (2016). Empirical Relationships of HGI in terms of proximate analysis of coal. In XVIII International Coal Preparation Congress, 953-957.
  • Cuhadaroglu, A. D., Kizgut, S., Yilmaz, S., & Zorer, Y. (2013). Characterization of the grinding behavior of binary mixtures of clinker and colemanite. Particulate Science and Technology, 31(6), 596-602.
  • Gouda, G. R. (1979). Effect of clinker composition on grindability. Cement and Concrete Research, 9(2), 209-218.
  • Gedik, İ., Duru, M., Pehlivan, Ş., & Timur, E., (2005). 1/50.000 ölçekli Türkiye Jeoloji haritaları, İstanbul-F22c Paftası, MTA Raporu, No:11, Ankara.
  • ASTM C1271-99. (2012). Standard Test Method for X-ray Spectrometric Analysis of Lime and Limestone.
  • Kumar, P., Sahoo, B.K., De, S., Kar, D.D., Chakraborty, S., & Meikap, B.C. (2010). Iron ore grind ability improvement by microwave pre-treatment. Journal of Industrial and Engineering Chemistry, 16(5), 805-812.

Kireçtaşları İçin Yeni Bir Kimyasal Öğütme İndeksi

Year 2022, Volume: 9 Issue: 1, 124 - 137, 30.06.2022
https://doi.org/10.35193/bseufbd.997319

Abstract

Bu çalışmada, kireçtaşı numuneleri (toplam 58 numune) öğütülebilirlik ve kimyasal bileşim açısından incelenmiştir. Öğütülebilirlik testleri standart HGI değirmeninde gerçekleştirilmiştir. Kireçtaşı örnekleri iki farklı kireçtaşı ocağından alınmış ve kimyasal bileşimleri açısından karakterize edilmiştir. Teknolojik kullanım sırasına göre, kireçtaşının kimyasal bileşimi kadar öğütülebilirliği de önemlidir. İncelenen ocaklardan alınan kireçtaşı numunelerinin kimyasal bileşimleri ve öğütme indeks (Hardgro ve Öğütülebilirlik Indeksi) değerleri farklıdır. Bu çalışma kapsamında, kireçtaşı numunelerinin kimyasal bileşim verileri ile öğütülebilirlik test sonuçları (HGI değerleri) ile ilişkilendirilmiştir. Bunun yanında, belirtilen bu ilişkilendirmeler grafiksel gösterim olarak bu kapsamda verilmiştir. HGI değerleri ile kimyasal bileşim verileri arasındaki ilişkilerin grafiksel gösteriminden sonra, her bir kimyasal bileşim öğesinin öğütülebilirlik açısından rolü anlaşılmıştır. Bu çalışma kapsamında HGI'yi tahmin etmek için kimyasal bileşim verilerini kullanan ampirik bir formül önerilmiştir.

References

  • Šiler, P., Kolarova, I., Bednarek, J., Jana, M., Musil, P., & Opravil, T. (2018). The possibilities of analysis of limestone chemical composition. IOP Conf. Series: Materials Science and Engineering.
  • Folk, R. L. (1959). Practical petrographical classification of limestones. Amer. Ass. Petrol. Geol. Bull., 43(1), 1–38.
  • Folk, R. L. (1962). Spectral subdivision of limestone types. Amer. Ass. Petrol., Geol. Mem., 1, 62–84.
  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. Mem. Amer. Ass. Petrol. Geol., 1, 108–121.
  • Mucsi, G., Rácz Á., Mag G., Antal G., & Csőke B. (2019). Volume based closed-cycle Hardgrovegrindability method. The Mining-Geology-Petroleum Engineering Bulletin, 34(4), 9-17.
  • Todorovic, D., Trumic, M., Andric, L., Milosevic, V., & Trumic, M. (2017). A quick method for bond work index approximate value determination. Physicochem. Probl. Miner. Process., 53(1), 321−332.
  • Bond, F.C., & Maxson, W. L. (1943). Standard grindability tests and calculations. Trans. Soc. Min. Eng. AIME, 153, 362–372.
  • ASTM D409 (1991). Standard Test Method for Grindability of Coal by the Hardgrove Machine Method.
  • Zeisel, H. G. (1953). Schriftenreihe der Zementindustrie. 14, Verein Deutcher Zementwerke, Düsseldorf, 51.
  • Hoşten, Ç. & Gülsün, M. (2004). Reactivity of limestones from different sources in Turkey. Minerals Engineering, 17(1), 97-99.
  • Yin, L. & Guo J. (2011). Study on Wet FGD Limestone Quality, Third International Conference on Measuring Technology and Mechatronics Automation, Shangshai, 605-608.
  • Deniz, V. (2014). Relationships between Bond's grindability (Gbg) and breakage parameters of grinding kinetic on limestone. Powder Technology, 139(3), 208-213.
  • Altun, N.E. (2014). Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control. Fuel Processing Technology, 128, 461-470.
  • Ozkahraman, H.T. (2005). A meaningful expression between bond work index, grindability index and friability value. Minerals Engineering, 18(10), 1057-1059.
  • Seo, J.H., Baek, C. S., Cho, J.S., Ahn, Y.J., Ahn, J.W., & Cho, K.H. (2019). Evaluation and application of grinding index of domestic desulfurization limestone. Journal of Energy Engineering, 28(1), 1-9.
  • Tichanek, F. (2008). Contribution to determination of coal grindability using Hardgrove Method. GeoSci. Eng., LIV (1).
  • Chelgani, S. C., Hower, J. C., Jorjani, E., Mesroghli, Sh., & Bagherieh, A. H. (2008). Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models. Fuel Proc. Technol, 89, 13–20.
  • Sahoo, R.K. (2006). Review: An investigation of single particle breakage tests for coal handling system of the gladstone port, Powder Technology, 161(2), 158-167.
  • Ozbayoglu, G., Ozbayoglu, A. M., & Ozbayoglu, M. E. (2008). Estimation of Hard grove grindability index of Turkish coals by neural networks. Int. J. Miner. Proc., 85, 93–100.
  • Sengupta, A.N. (2002). An assessment of grindability index of coal, Fuel Processing Technology, 76(1) 1-10.
  • Mendis, B.S.M., Jayathunga, T.H.G.S., Madurapperuma, H.H., Rohitha, L.P.S., Dharmarathna, P.G.R., & Hemalal, P.V.A. (2017). Determination of existing relationship amonggrindability, chemical composition and particle size of raw material mix at Aruwakkalu Limestone.
  • Kural, A., & Ozsoy, C. (2004). Identification and control of the raw material bending process in cement industry. International Journal of Adaptation Control Signal Processing, 18(5), 427-442.
  • Frigione, G., Zenone, F. & Esposito, M. V. (1983). The effect of chemical composition on Portland cement clinker grindability. Cement and Concrete Research, 13(4), 483-492.
  • Ürünveren, A., Altıner, M., Kuvvetli, Y., Ural, O. B., & Ural, S. (2020). Prediction of Hard grove grindability index of Afsin-Elbistan (Turkey) Low-grade Coals based on proximate analysis and ash chemical composition by neural networks. International Journal of Coal Preparation and Utilization, 40(10), 701-711.
  • Bilen, M., Kizgut, S., Cuhadaroglu, A., Yilmaz, S., & Toroglu, İ. (2017). Coal grindability and breakage parameters. International Journal of Coal Preparation and Utilization, 37(5), 279-284.
  • Bilen, M., Kızgut, S., Yilmaz, S., Baris, K., & Cuhadaroglu, D. (2018). Grindability of coal changing with burial depth. International Journal of Coal Preparation and Utilization, 38(2), 75-87.
  • Yilmaz, S., & Bilen, M. (2016). Empirical Relationships of HGI in terms of proximate analysis of coal. In XVIII International Coal Preparation Congress, 953-957.
  • Cuhadaroglu, A. D., Kizgut, S., Yilmaz, S., & Zorer, Y. (2013). Characterization of the grinding behavior of binary mixtures of clinker and colemanite. Particulate Science and Technology, 31(6), 596-602.
  • Gouda, G. R. (1979). Effect of clinker composition on grindability. Cement and Concrete Research, 9(2), 209-218.
  • Gedik, İ., Duru, M., Pehlivan, Ş., & Timur, E., (2005). 1/50.000 ölçekli Türkiye Jeoloji haritaları, İstanbul-F22c Paftası, MTA Raporu, No:11, Ankara.
  • ASTM C1271-99. (2012). Standard Test Method for X-ray Spectrometric Analysis of Lime and Limestone.
  • Kumar, P., Sahoo, B.K., De, S., Kar, D.D., Chakraborty, S., & Meikap, B.C. (2010). Iron ore grind ability improvement by microwave pre-treatment. Journal of Industrial and Engineering Chemistry, 16(5), 805-812.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Candan Bilen 0000-0001-9209-0872

Publication Date June 30, 2022
Submission Date September 18, 2021
Acceptance Date March 8, 2022
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Bilen, C. (2022). A New Chemical Method to Predict Grindability Index (HGI) for Limestones. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 124-137. https://doi.org/10.35193/bseufbd.997319

Cited By

INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING
Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi
https://doi.org/10.31796/ogummf.1386158