Research Article
BibTex RIS Cite

Mikro Ölçekli Sıfır Değerlikli Demir (mZVI) Partikülü ile Sulu Çözeltilerden C.I. Vat Green 1 Boyasının Gideriminin İncelenmesi

Year 2023, Volume: 10 Issue: 1, 54 - 67, 31.05.2023
https://doi.org/10.35193/bseufbd.1131538

Abstract

Bu çalışma, sulardan C.I. Vat Green 1 boyar maddesinin adsorpsiyonu için mikro ölçekli sıfır değerlikli demirin (mZVI) uygulanabilirliğini göstermektedir. mZVI partikülleri SEM, EDX, BET yüzey alanı analizi ve pHzpc ile karakterize edilmiştir. Analizlerden kullanılan mZVI partiküllerinin yüzey özelliklerinde meydana gelen değişimler ise SEM ve EDX ile belirlenmiştir. 5.2 m2/g BET yüzey alanı ile yaklaşık 5 m’den küçük olan küresel partiküller, yüksek giderim verimini desteklemiştir. Analiz sonrasında partikül boyut ve şekilleri ile elementel bileşimde meydana gelen değişiklikler yüksek adsorpsiyon verimini doğruladığı gibi 5.73 olan pHzpc değeri de düşük pH’larda yüksek giderim veriminin gözlenmesini sağlamıştır. C.I. Vat Green 1’in giderim verimi ile adsorpsiyon kinetik ve izotermlerini değerlendirebilmek için çözelti pH’sı, demir dozajı, reaksiyon sıcaklığı, kirletici konsantrasyonu gibi parametreler kesikli deney serileri ile incelenmiştir. 3’ten büyük pH değerlerinde, 1 g/L’den büyük mZVI dozajlarında ve kirletici derişiminin arttığı durumlarda giderim verimi azalırken 1 g/L’ye kadar olan dozajlarda ve sıcaklık artışı ile verim artmıştır. Optimum pH, 3 ve optimum mZVI dozajı 1 g/L olarak belirlenmiştir. TOK sonuçları da giderim mekanizmasının adsorpsiyon olduğunu doğrulamıştır. Kinetik verilerin en iyi olarak pseudo ikinci dereceden modele uyduğu bulunmuştur. Adsorpsiyon denge verileri Langmuir modeli ile temsil edilmiş ve maksimum adsorpsiyon kapasitesi 36.50 mg/g olarak bulunmuştur.

References

  • Fu, F., Han, W., Tang, B., Hu, M., & Cheng, Z. (2013). Insights into environmental remediation of heavy metal and organic pollutants: Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity. Chemical Engineering Journal, 232, 534–540. DOİ: https://doi.org/10.1016/j.cej.2013.08.014.
  • Lee, J.W., Cha, D.K., Oh, Y.K., Ko, K.B., & Jin, S.H. (2010). Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater. Journal of Hazardous Materials, 180, 354–360. DOİ: https://doi.org/10.1016/j.jhazmat.2010.04.038.
  • Chang, M-C., Shu, H-Y., & Yu, H-H. (2006). An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater. Journal of Hazardous Materials B, 138, 574–581. DOİ: https://doi.org/10.1016/j.jhazmat.2006.05.088.
  • Ravikumar, K.V.G., Santhosh S., Sudakaran, S.V., Nancharaiah, Y.V., Mrudula P., Chandrasekaran, N., & Mukherjee, A. (2018). Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal. Journal of Environmental Chemical Engineering, 6, 1683–1689. DOİ: https://doi.org/10.1016/j.jece.2018.02.023.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085. DOİ: https://doi.org/10.1016/j.biortech.2005.05.001.
  • Chatterjee, S., Lim, S-R., & Woo, S.H. (2010). Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chemical Engineering Journal, 160, 27–32. DOİ: https://doi.org/10.1016/j.cej.2010.02.045.
  • Paul, S.A., Chavan, S.K., & Khambe, S.D. (2012). Studies on characterization of textile industrial waste water in Solapur city. International Journal of Chemical Sciences, 10(2), 635-642.
  • Ghaly, A.E., Ananthashankar, R., Alhattab, M., & Ramakrishnan, V.V. (2014). Production, characterization and treatment of textile effluents: a critical review. Journal Chemical Engineering Process Technology, 5, 182. DOİ: https://doi.org/10.4172/2157-7048.1000182.
  • Karam, A., Zaher, K., & Mahmoud, A.S. (2020). Comparative Studies of Using Nano Zerovalent Iron, Activated Carbon, and Green Synthesized Nano Zerovalent Iron for Textile Wastewater Color Removal Using Artificial Intelligence, Regression Analysis, Adsorption Isotherm, and Kinetic Studies. Air, Soil and Water Research, 13, 1–19. DOİ: https://doi.org/10.1177/1178622120908273.
  • Zhang, L., Shao, Q., & Xu, C. (2019). Enhanced azo dye removal from wastewater by coupling sulfidated zero-valent iron with a chelator. Journal of Cleaner Production, 213, 753-761. DOİ: https://doi.org/10.1016/j.jclepro.2018.12.183.
  • Wang, S., Song, Y., & Sun, Y. (2018). Enhanced dyes removal by sulfidated zerovalent iron: Kinetics and influencing factors. Environmental Technology & Innovation, 11, 339–347. DOİ: https://doi.org/10.1016/j.eti.2018.06.014.
  • Sun, X., Kurokawa, T., Suzuki, M., Takağı, M., & Kawase, Y. (2015). Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms. Journal of Environmental Science and Health, Part A, 50, 1057–1071. DOİ: https://doi.org/10.1080/10934529.2015.1038181.
  • Du, Y., Dai, M., Cao, J., Peng, C., Ali, I., Naz, I., & Li, J. (2020). Efficient removal of acid orange 7 using a porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation process. Chemosphere, 244, 125522. DOİ: https://doi.org/10.1016/j.chemosphere.2019.125522.
  • Basavarajappa, P.S., Seethya, N.H.B., Ganganagappa, N., Eshwaraswamy, K.B., & Reddy, K.R. (2018). Enhanced Photocatalytic Activity and Biosensing of Gadolinium Substituted BiFeO3 Nanoparticles. ChemistrySelect, 3(31), 9025–9033. DOİ: https://doi.org/10.1002/slct.201801198.
  • Lops, C., Ancona, A., Di Cesare, K., Dumontel, B., Garino, N., Canavese, G., Hérnandez, S., & Cauda, V. (2019). Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Applied Catalysis B: Environmental, 243, 629–640. DOİ: https://doi.org/10.1016/j.apcatb.2018.10.078.
  • Reddy, V.C., Reddy, N.I., Akkinepally, B., Harish, V.V.N., Reddy, R.K., & Jaesool, S. (2019). Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceramics International, 45, 15298–15306. DOİ: https://doi.org/10.1016/j.ceramint.2019.05.020.
  • Tavangar, T., Karimi, M., Rezakazemi, M., Reddy, K.R., & Aminabhavi, T.M. (2019). Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chemical Engineering Journal, 385, 123787. DOİ: https://doi.org/10.1016/j.cej.2019.123787.
  • Ain, Q.U., Rasheed, U., Yaseen, M., Zhang, H., & Tonga, Z. (2020). Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. Journal of Hazardous Materials, 397, 122758. DOİ: https://doi.org/10.1016/j.jhazmat.2020.122758.
  • Chequer, F.M.D., Dorta, D.J., & Oliveira, D.P.D. (2011). Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks? Ed: Hauser, P.J. (Ed.), Advances in Treating Textile Effluent. InTech, Rijeka, Croatia, Sayfa: 27-48. DOİ: https://doi.org/10.5772/19872.
  • Rápó, E., & Tonk, S. (2021). Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26, 5419. DOİ: https://doi.org/10.3390/molecules26175419.
  • Arabi, S., Sohrabi, M.R., & Khosravi, M., 2013. Adsorption kinetics and thermodynamics of vat dye onto nano zero-valent iron. Indian Journal of Chemical Technology, 20(3), 173-179.
  • Qayyum, S., Nasir, A., Mian, A.H., Rehman, S., Qayum, S., Siddiqui, M.F., & Kalsoom, U. (2020). Extraction of Peroxidase Enzyme from Different Vegetables for Biodetoxification of Vat Dyes. Applied Nanoscience, 10, 5191–5199. DOİ: https://doi.org/10.1007/s13204-020-01348-4.
  • Hunger, K. (2003). Industrial Dyes, Chemistry, Properties, Applications. Ed: Dr. Klaus Hunger, Wiley-VCH: Weinheim, Germany, 660. DOİ: https://doi.org/10.1002/3527602011.
  • Kariyajjanavar, P., Narayana, J., & Nayaka, Y.A. (2012). Degradation of Simulated Dye Wastewater by Electrochemical Method on Carbon Electrodes. Indian Journal of Natural Sciences, 1I(10), 809-821.
  • Benkhaya, S., M’rabet, S., & El Harfi, A.A. (2020). A review on Classifications, Recent Synthesis and Applications of Textile Dyes. Inorganic Chemistry Communications, 115, 107891. DOİ: https://doi.org/10.1016/j.inoche.2020.107891.
  • Balan, D.S.L., & Monteiro, R.T.R. (2001). Decolorization of textile Indigo dye by ligninolytic fungi. Journal of Biotechnology, 89:141-145. DOİ: https://doi.org/10.1016/S0168-1656(01)00304-2.
  • Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30, 953–971. DOİ: https://doi.org/10.1016/j.envint.2004.02.001.
  • Hamdy, A., Mostafa, M.K., & Nasr, M. (2018). Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water ScienceTechnology, 78(2): 367–378. DOİ: https://doi.org/10.2166/wst.2018.306.
  • Raman, C., & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: a review. Journal of Environmental Management, 177, 341–355. DOİ: https://doi.org/10.1016/j.jenvman.2016.04.034.
  • Moghaddam, H.M., Beitollahi, H., Tajik, S., Malakootian, M., & Maleh, H.K. (2014). Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environmental Monitoring and Assessment, 186, 7431–7441. DOİ: https://doi.org/10.1007/s10661-014-3938-8.
  • Gupta, V.K., & Suhas (2009). Application of low-cost adsorbents for dye removal — A review. Journal of Environmental Management, 90(8), 2313–2342. DOİ: https://doi.org/10.1016/j.jenvman.2008.11.017.
  • Sansuk, S., Srijaranai, S., & Srijaranai, S. (2016). A new approach for removing anionic organic dyes from wastewater based on electrostatically driven assembly. Environmental Science & Technology, 50(12), 6477–6484. DOİ: https://doi.org/10.1021/acs.est.6b00919.
  • Li, Z., Sellaouib, L., Franco, D., Netto, M.S., Georgin, J., Dotto, G.L., Bajahzar, A., Belmabrouk, H., Bonilla-Petriciolet, A., & Li, Q. (2020). Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism. Chemical Engineering Journal, 389, 124467. DOİ: https://doi.org/10.1016/j.cej.2020.124467.
  • Zhao, X., Zhao, H., Dai, W., Wei, Y., Wang, Y., Zhang, Y., Zhi, L., Huang, H., & Gao, Z. (2018). A metal-organic framework with large 1-D channels and rich single bondOH sites for high-efficiency chloramphenicol removal from water. Journal of Colloid and Interface Science, 526, 28–34. DOİ: https://doi.org/10.1016/j.jcis.2018.04.095.
  • Fan, F., Wang, B., Yuan, S.H., Wu, X.H., Chen, J., & Wang, L.L. (2010). Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology, 101(19), 7661–7664. DOİ: https://doi.org/10.1016/j.biortech.2010.04.046.
  • Yu, J., Hou, X., Hu, X., Yuan, H., Wang, J., & Chen, C. (2019). Efficient degradation of chloramphenicol by zero-valent iron microspheres and new insights in mechanisms. Applied Catalysis B: Environmental, 256, 117876. DOİ: https://doi.org/10.1016/j.apcatb.2019.117876.
  • Alqadami, A., Naushad, M., Abdalla, M., Khan, M., & Alothman, Z. (2016). Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies. Journal of Chemical & Engineering Data, 61(11), 3806–3813. DOİ: https://doi.org/10.1021/acs.jced.6b00446.
  • Daneshvar, E., Vazirzadeh, A., Niazi, A., Kousha, M., Naushad, M., & Bhatnagar, A. (2017). Desorption of Methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. Journal of Cleaner Production, 152, 443–453. DOİ: https://doi.org/10.1016/j.jclepro.2017.03.119.
  • Tatarchuk, T., Paliychuk, N., Bitra, R.B., Shyichuk, A., Naushade, M., Mironyuk, I., & Ziółkowskad, D. (2019). Adsorptive removal of toxic Methylene Blue and Acid Orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents. Desalination and Water Treatment, 150, 374-385. DOİ: https://doi.org/10.5004/dwt.2019.23751.
  • Mohanraj, J., Durgalakshmi, D., Balakumar, S., Aruna, P., Ganesan, S., Rajendran, S., & Naushad, M. (2020). Low cost and quick time absorption of organic dye pollutants under ambient condition using partially exfoliated graphite. Journal of Water Process Engineering, 34, 101078. DOİ: https://doi.org/10.1016/j.jwpe.2019.101078.
  • Naushad, M., Ahamad, T., AlOthman, Z.A., & Al-Muhtaseb, A.H. (2019). Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: adsorption kinetics & isotherm modelling. Journal of Molecular Liquids, 279, 1-8. DOİ: https://doi.org/10.1016/j.molliq.2019.01.090.
  • Saxe, J.P., Lubenow, B.L., Chiu, P.C., & Cha, D.K. (2006). Enhanced biodegradation of azo dyes using an integrated elemental iron-activated sludge system: I. Evaluation of system performance. Water Environment Research, 78(1), 19–25. DOİ: https://doi.org/10.2175/106143005x84477.
  • Ma, L.M., & Zhang, W.X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. Environmental Science & Technology, 42(15), 5384–5389. DOİ: https://doi.org/10.1021/es801743s.
  • Zhang, Y., Jing, Y., Quan, X., Liu, Y., & Onu, P. (2011). A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater. Water Science Technology, 63(4):741-746. DOİ: https://doi.org/10.2166/wst.2011.301.
  • Su, Y., Adeleye, A.S., Keller, A.A., Huang, Y., Dai, C., Zhou, X., & Zhang, Y. (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 74, 47-57. DOİ: https://doi.org/10.1016/j.watres.2015.02.004.
  • Du, J., Bao, J., Lu, C., & Werner, D. (2016). Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Research, 102, 73-81. DOİ: https://doi.org/10.1016/j.watres.2016.06.009.
  • Ezzatahmadi, N., Ayoko, G.A., Millar, G.J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 312, 336–350. DOİ: https://doi.org/10.1016/j.cej.2016.11.154.
  • Marcelo, C.R., Puiatti, G.A., Nascimento, M.A., Oliveira, A.F., & Lopes, R.P. (2018). Degradation of the Reactive Blue 4 Dye in Aqueous Solution Using Zero-Valent Copper Nanoparticles. J. Nanomater., 2018, 4642038. DOİ: https://doi.org/10.1155/2018/4642038.
  • Nguyen, D.T.C., Dang, H.H., Vo, D.-V.N., Bach, L.G., Nguyen, T.D., & Tran, T.V. (2021). Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. Journal of Hazardous Materials, 404, 124146. DOİ: https://doi.org/10.1016/j.jhazmat.2020.124146.
  • Latha, K., & Selvi, S.A. (2020). Green synthesis of TiO2 nanoparticle prepared from tridax procumbens leaf extract for dye adsorption and their isotherm and kinetic studies. Int. J. Adv. Sci. Eng. Res., 5 (1), 293-304.
  • Raman, C.D., & Kanmani, S. (2018). Decolorization of mono azo dye and textile wastewater using nano iron particles. Environmental Progress & Sustainable Energy, 38, 366-376. DOİ: https://doi.org/10.1002/ep.13063.
  • Abdel Ghafar, H.H., Ali, G.A.M., Fouad, O.A., & Makhlouf, S.A. (2015). Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 53(11), 2980-2989. https://doi.org/10.1080/19443994.2013.871343.
  • National Library of Medicine, National Center for Biotechnology Information, 2005, Vat Green 1, (https://pubchem.ncbi.nlm.nih.gov/compound/Vat-Green-1), Erişim Tarihi: 15 Nisan 2022.
  • Hanay, Ö., Yıldız, B., Aslan, S., & Hasar, H. (2014). Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products. Environmental Science and Pollution Research, 21, 3774–3782. DOİ: https://doi.org/10.1007/s11356-013-2342-1.
  • Huguet, M.R., & Marshall, W.D. (2009). Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles. Journal of Hazardous Materials, 169, 1081–1087. DOİ: https://doi.org/10.1016/j.jhazmat.2009.04.062.
  • Cushing, B.L., Kolesnichenko, V.L., & O’Connor, C.J. (2004). Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews, 104 (9), 3893–3946. DOİ: https://doi.org/10.1021/cr030027b.
  • Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of The Total Environment, 466–467, 210–213. DOİ: https://doi.org/10.1016/j.scitotenv.2013.07.022.
  • He, Y., Gao, J-F., Feng, F-Q., Liu, C., Peng, Y-Z., & Wang, S-Y. (2012). The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chemical Engineering Journal, 179, 8–18. DOİ: https://doi.org/10.1016/j.cej.2011.05.107.
  • Fan, J., Guo, Y., Wang, J., & Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904–910. DOİ: https://doi.org/10.1016/j.jhazmat.2008.11.091.
  • Chen, J.L., Al-Abed, S.R., Ryan, J.A., & Li, Z. (2001). Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials, 83, 243–254. DOİ: https://doi.org/10.1016/S0304-3894(01)00193-5.
  • Sun, Y., Li, J., Huang, T., & Guan, X. (2016). The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Research, 100, 277–295. DOİ: https://doi.org/10.1016/j.watres.2016.05.031.
  • Yang, G.C.C., & Lee, H.L. (2005). Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research, 39:884–894. DOİ: https://doi.org/10.1016/j.watres.2004.11.030.
  • Donadelli, J.A., Carlos, L., Arques, A., & García Einschlag, F.S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61. DOİ: https://doi.org/10.1016/j.apcatb.2018.02.057.
  • Cwiertny, D.M., & Roberts, A.L. (2005). On the nonlinear relationship between kobs and reductant mass loading in iron batch systems. Environmental Science & Technology, 39, 8948–8957. DOİ: http://dx.doi.org/10.1021/es050472j.
  • Li, J., Li, Y., & Meng, Q. (2010). Removal of nitrate by zero-valent iron and pillared bentonite. J. Hazard. Mater., 174, 188-193. DOİ: http://doi.org/10.1016/j.jhazmat.2009.09.035.
  • Le, C., Wu, J-H., Li, P., Wang, X., Zhu, N-W., Wu, P-X., & Yang, B. (2011). Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron. Water Science Technology, 64(3), 754-759. DOİ: https://doi.org/10.2166/wst.2011.708.
  • Arabi, S., & Sohrabi, M. (2014). Removal of methylene blue, a basic dye, from aqueous solutions using nano-zerovalent iron. Water Science & Technology, 70 (1), 24–31. DOİ: https://doi.org/10.2166/wst.2014.189.
  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10 (S1), S1445-S1451. DOİ: https://doi.org/10.1016/j.arabjc.2013.04.021.
  • Davarnejad, R., Azizi, A., Mohammadi, M., & Mansoori, S. (2020). A green technique for synthesising iron oxide nanoparticles by extract of centaurea cyanus plant: an optimised adsorption process for methylene blue. International Journal of Environmental Analytical Chemistry. DOİ: https://doi.org/10.1080/03067319.2020.1756273.
  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe (On the theory of so-called adsorption of soluble substances). Kungliga svenska vetenskaps akademiens. Handlingar, 24, 1-39.
  • Ho, Y.-S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76, 183-191. DOİ: https://doi.org/10.1205/095758298529326.
  • Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. Journal of Nanostructure in Chemistry, 3(55). DOİ: https://doi.org/10.1186/2193-8865-3-55.
  • Sahoo, T., & Prélot, B. (2020). Adsorption processes for the removal of contaminants from wastewater, Kitap Adı: Nanomaterials for the Detection and Removal of Wastewater Pollutants, 161-222. DOİ: https://doi.org/10.1016/B978-0-12-818489-9.00007-4.
  • Hubbe, M.A., Azizian, S., & Douven, S. (2019). Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources, 14(3), 7582-7626. DOİ: https://doi.org/10.15376/BIORES.14.3.7582-7626.
Year 2023, Volume: 10 Issue: 1, 54 - 67, 31.05.2023
https://doi.org/10.35193/bseufbd.1131538

Abstract

References

  • Fu, F., Han, W., Tang, B., Hu, M., & Cheng, Z. (2013). Insights into environmental remediation of heavy metal and organic pollutants: Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity. Chemical Engineering Journal, 232, 534–540. DOİ: https://doi.org/10.1016/j.cej.2013.08.014.
  • Lee, J.W., Cha, D.K., Oh, Y.K., Ko, K.B., & Jin, S.H. (2010). Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater. Journal of Hazardous Materials, 180, 354–360. DOİ: https://doi.org/10.1016/j.jhazmat.2010.04.038.
  • Chang, M-C., Shu, H-Y., & Yu, H-H. (2006). An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater. Journal of Hazardous Materials B, 138, 574–581. DOİ: https://doi.org/10.1016/j.jhazmat.2006.05.088.
  • Ravikumar, K.V.G., Santhosh S., Sudakaran, S.V., Nancharaiah, Y.V., Mrudula P., Chandrasekaran, N., & Mukherjee, A. (2018). Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal. Journal of Environmental Chemical Engineering, 6, 1683–1689. DOİ: https://doi.org/10.1016/j.jece.2018.02.023.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085. DOİ: https://doi.org/10.1016/j.biortech.2005.05.001.
  • Chatterjee, S., Lim, S-R., & Woo, S.H. (2010). Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chemical Engineering Journal, 160, 27–32. DOİ: https://doi.org/10.1016/j.cej.2010.02.045.
  • Paul, S.A., Chavan, S.K., & Khambe, S.D. (2012). Studies on characterization of textile industrial waste water in Solapur city. International Journal of Chemical Sciences, 10(2), 635-642.
  • Ghaly, A.E., Ananthashankar, R., Alhattab, M., & Ramakrishnan, V.V. (2014). Production, characterization and treatment of textile effluents: a critical review. Journal Chemical Engineering Process Technology, 5, 182. DOİ: https://doi.org/10.4172/2157-7048.1000182.
  • Karam, A., Zaher, K., & Mahmoud, A.S. (2020). Comparative Studies of Using Nano Zerovalent Iron, Activated Carbon, and Green Synthesized Nano Zerovalent Iron for Textile Wastewater Color Removal Using Artificial Intelligence, Regression Analysis, Adsorption Isotherm, and Kinetic Studies. Air, Soil and Water Research, 13, 1–19. DOİ: https://doi.org/10.1177/1178622120908273.
  • Zhang, L., Shao, Q., & Xu, C. (2019). Enhanced azo dye removal from wastewater by coupling sulfidated zero-valent iron with a chelator. Journal of Cleaner Production, 213, 753-761. DOİ: https://doi.org/10.1016/j.jclepro.2018.12.183.
  • Wang, S., Song, Y., & Sun, Y. (2018). Enhanced dyes removal by sulfidated zerovalent iron: Kinetics and influencing factors. Environmental Technology & Innovation, 11, 339–347. DOİ: https://doi.org/10.1016/j.eti.2018.06.014.
  • Sun, X., Kurokawa, T., Suzuki, M., Takağı, M., & Kawase, Y. (2015). Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms. Journal of Environmental Science and Health, Part A, 50, 1057–1071. DOİ: https://doi.org/10.1080/10934529.2015.1038181.
  • Du, Y., Dai, M., Cao, J., Peng, C., Ali, I., Naz, I., & Li, J. (2020). Efficient removal of acid orange 7 using a porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation process. Chemosphere, 244, 125522. DOİ: https://doi.org/10.1016/j.chemosphere.2019.125522.
  • Basavarajappa, P.S., Seethya, N.H.B., Ganganagappa, N., Eshwaraswamy, K.B., & Reddy, K.R. (2018). Enhanced Photocatalytic Activity and Biosensing of Gadolinium Substituted BiFeO3 Nanoparticles. ChemistrySelect, 3(31), 9025–9033. DOİ: https://doi.org/10.1002/slct.201801198.
  • Lops, C., Ancona, A., Di Cesare, K., Dumontel, B., Garino, N., Canavese, G., Hérnandez, S., & Cauda, V. (2019). Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Applied Catalysis B: Environmental, 243, 629–640. DOİ: https://doi.org/10.1016/j.apcatb.2018.10.078.
  • Reddy, V.C., Reddy, N.I., Akkinepally, B., Harish, V.V.N., Reddy, R.K., & Jaesool, S. (2019). Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceramics International, 45, 15298–15306. DOİ: https://doi.org/10.1016/j.ceramint.2019.05.020.
  • Tavangar, T., Karimi, M., Rezakazemi, M., Reddy, K.R., & Aminabhavi, T.M. (2019). Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chemical Engineering Journal, 385, 123787. DOİ: https://doi.org/10.1016/j.cej.2019.123787.
  • Ain, Q.U., Rasheed, U., Yaseen, M., Zhang, H., & Tonga, Z. (2020). Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. Journal of Hazardous Materials, 397, 122758. DOİ: https://doi.org/10.1016/j.jhazmat.2020.122758.
  • Chequer, F.M.D., Dorta, D.J., & Oliveira, D.P.D. (2011). Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks? Ed: Hauser, P.J. (Ed.), Advances in Treating Textile Effluent. InTech, Rijeka, Croatia, Sayfa: 27-48. DOİ: https://doi.org/10.5772/19872.
  • Rápó, E., & Tonk, S. (2021). Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26, 5419. DOİ: https://doi.org/10.3390/molecules26175419.
  • Arabi, S., Sohrabi, M.R., & Khosravi, M., 2013. Adsorption kinetics and thermodynamics of vat dye onto nano zero-valent iron. Indian Journal of Chemical Technology, 20(3), 173-179.
  • Qayyum, S., Nasir, A., Mian, A.H., Rehman, S., Qayum, S., Siddiqui, M.F., & Kalsoom, U. (2020). Extraction of Peroxidase Enzyme from Different Vegetables for Biodetoxification of Vat Dyes. Applied Nanoscience, 10, 5191–5199. DOİ: https://doi.org/10.1007/s13204-020-01348-4.
  • Hunger, K. (2003). Industrial Dyes, Chemistry, Properties, Applications. Ed: Dr. Klaus Hunger, Wiley-VCH: Weinheim, Germany, 660. DOİ: https://doi.org/10.1002/3527602011.
  • Kariyajjanavar, P., Narayana, J., & Nayaka, Y.A. (2012). Degradation of Simulated Dye Wastewater by Electrochemical Method on Carbon Electrodes. Indian Journal of Natural Sciences, 1I(10), 809-821.
  • Benkhaya, S., M’rabet, S., & El Harfi, A.A. (2020). A review on Classifications, Recent Synthesis and Applications of Textile Dyes. Inorganic Chemistry Communications, 115, 107891. DOİ: https://doi.org/10.1016/j.inoche.2020.107891.
  • Balan, D.S.L., & Monteiro, R.T.R. (2001). Decolorization of textile Indigo dye by ligninolytic fungi. Journal of Biotechnology, 89:141-145. DOİ: https://doi.org/10.1016/S0168-1656(01)00304-2.
  • Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30, 953–971. DOİ: https://doi.org/10.1016/j.envint.2004.02.001.
  • Hamdy, A., Mostafa, M.K., & Nasr, M. (2018). Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water ScienceTechnology, 78(2): 367–378. DOİ: https://doi.org/10.2166/wst.2018.306.
  • Raman, C., & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: a review. Journal of Environmental Management, 177, 341–355. DOİ: https://doi.org/10.1016/j.jenvman.2016.04.034.
  • Moghaddam, H.M., Beitollahi, H., Tajik, S., Malakootian, M., & Maleh, H.K. (2014). Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environmental Monitoring and Assessment, 186, 7431–7441. DOİ: https://doi.org/10.1007/s10661-014-3938-8.
  • Gupta, V.K., & Suhas (2009). Application of low-cost adsorbents for dye removal — A review. Journal of Environmental Management, 90(8), 2313–2342. DOİ: https://doi.org/10.1016/j.jenvman.2008.11.017.
  • Sansuk, S., Srijaranai, S., & Srijaranai, S. (2016). A new approach for removing anionic organic dyes from wastewater based on electrostatically driven assembly. Environmental Science & Technology, 50(12), 6477–6484. DOİ: https://doi.org/10.1021/acs.est.6b00919.
  • Li, Z., Sellaouib, L., Franco, D., Netto, M.S., Georgin, J., Dotto, G.L., Bajahzar, A., Belmabrouk, H., Bonilla-Petriciolet, A., & Li, Q. (2020). Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism. Chemical Engineering Journal, 389, 124467. DOİ: https://doi.org/10.1016/j.cej.2020.124467.
  • Zhao, X., Zhao, H., Dai, W., Wei, Y., Wang, Y., Zhang, Y., Zhi, L., Huang, H., & Gao, Z. (2018). A metal-organic framework with large 1-D channels and rich single bondOH sites for high-efficiency chloramphenicol removal from water. Journal of Colloid and Interface Science, 526, 28–34. DOİ: https://doi.org/10.1016/j.jcis.2018.04.095.
  • Fan, F., Wang, B., Yuan, S.H., Wu, X.H., Chen, J., & Wang, L.L. (2010). Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology, 101(19), 7661–7664. DOİ: https://doi.org/10.1016/j.biortech.2010.04.046.
  • Yu, J., Hou, X., Hu, X., Yuan, H., Wang, J., & Chen, C. (2019). Efficient degradation of chloramphenicol by zero-valent iron microspheres and new insights in mechanisms. Applied Catalysis B: Environmental, 256, 117876. DOİ: https://doi.org/10.1016/j.apcatb.2019.117876.
  • Alqadami, A., Naushad, M., Abdalla, M., Khan, M., & Alothman, Z. (2016). Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies. Journal of Chemical & Engineering Data, 61(11), 3806–3813. DOİ: https://doi.org/10.1021/acs.jced.6b00446.
  • Daneshvar, E., Vazirzadeh, A., Niazi, A., Kousha, M., Naushad, M., & Bhatnagar, A. (2017). Desorption of Methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. Journal of Cleaner Production, 152, 443–453. DOİ: https://doi.org/10.1016/j.jclepro.2017.03.119.
  • Tatarchuk, T., Paliychuk, N., Bitra, R.B., Shyichuk, A., Naushade, M., Mironyuk, I., & Ziółkowskad, D. (2019). Adsorptive removal of toxic Methylene Blue and Acid Orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents. Desalination and Water Treatment, 150, 374-385. DOİ: https://doi.org/10.5004/dwt.2019.23751.
  • Mohanraj, J., Durgalakshmi, D., Balakumar, S., Aruna, P., Ganesan, S., Rajendran, S., & Naushad, M. (2020). Low cost and quick time absorption of organic dye pollutants under ambient condition using partially exfoliated graphite. Journal of Water Process Engineering, 34, 101078. DOİ: https://doi.org/10.1016/j.jwpe.2019.101078.
  • Naushad, M., Ahamad, T., AlOthman, Z.A., & Al-Muhtaseb, A.H. (2019). Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: adsorption kinetics & isotherm modelling. Journal of Molecular Liquids, 279, 1-8. DOİ: https://doi.org/10.1016/j.molliq.2019.01.090.
  • Saxe, J.P., Lubenow, B.L., Chiu, P.C., & Cha, D.K. (2006). Enhanced biodegradation of azo dyes using an integrated elemental iron-activated sludge system: I. Evaluation of system performance. Water Environment Research, 78(1), 19–25. DOİ: https://doi.org/10.2175/106143005x84477.
  • Ma, L.M., & Zhang, W.X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. Environmental Science & Technology, 42(15), 5384–5389. DOİ: https://doi.org/10.1021/es801743s.
  • Zhang, Y., Jing, Y., Quan, X., Liu, Y., & Onu, P. (2011). A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater. Water Science Technology, 63(4):741-746. DOİ: https://doi.org/10.2166/wst.2011.301.
  • Su, Y., Adeleye, A.S., Keller, A.A., Huang, Y., Dai, C., Zhou, X., & Zhang, Y. (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 74, 47-57. DOİ: https://doi.org/10.1016/j.watres.2015.02.004.
  • Du, J., Bao, J., Lu, C., & Werner, D. (2016). Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Research, 102, 73-81. DOİ: https://doi.org/10.1016/j.watres.2016.06.009.
  • Ezzatahmadi, N., Ayoko, G.A., Millar, G.J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 312, 336–350. DOİ: https://doi.org/10.1016/j.cej.2016.11.154.
  • Marcelo, C.R., Puiatti, G.A., Nascimento, M.A., Oliveira, A.F., & Lopes, R.P. (2018). Degradation of the Reactive Blue 4 Dye in Aqueous Solution Using Zero-Valent Copper Nanoparticles. J. Nanomater., 2018, 4642038. DOİ: https://doi.org/10.1155/2018/4642038.
  • Nguyen, D.T.C., Dang, H.H., Vo, D.-V.N., Bach, L.G., Nguyen, T.D., & Tran, T.V. (2021). Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. Journal of Hazardous Materials, 404, 124146. DOİ: https://doi.org/10.1016/j.jhazmat.2020.124146.
  • Latha, K., & Selvi, S.A. (2020). Green synthesis of TiO2 nanoparticle prepared from tridax procumbens leaf extract for dye adsorption and their isotherm and kinetic studies. Int. J. Adv. Sci. Eng. Res., 5 (1), 293-304.
  • Raman, C.D., & Kanmani, S. (2018). Decolorization of mono azo dye and textile wastewater using nano iron particles. Environmental Progress & Sustainable Energy, 38, 366-376. DOİ: https://doi.org/10.1002/ep.13063.
  • Abdel Ghafar, H.H., Ali, G.A.M., Fouad, O.A., & Makhlouf, S.A. (2015). Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 53(11), 2980-2989. https://doi.org/10.1080/19443994.2013.871343.
  • National Library of Medicine, National Center for Biotechnology Information, 2005, Vat Green 1, (https://pubchem.ncbi.nlm.nih.gov/compound/Vat-Green-1), Erişim Tarihi: 15 Nisan 2022.
  • Hanay, Ö., Yıldız, B., Aslan, S., & Hasar, H. (2014). Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products. Environmental Science and Pollution Research, 21, 3774–3782. DOİ: https://doi.org/10.1007/s11356-013-2342-1.
  • Huguet, M.R., & Marshall, W.D. (2009). Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles. Journal of Hazardous Materials, 169, 1081–1087. DOİ: https://doi.org/10.1016/j.jhazmat.2009.04.062.
  • Cushing, B.L., Kolesnichenko, V.L., & O’Connor, C.J. (2004). Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews, 104 (9), 3893–3946. DOİ: https://doi.org/10.1021/cr030027b.
  • Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of The Total Environment, 466–467, 210–213. DOİ: https://doi.org/10.1016/j.scitotenv.2013.07.022.
  • He, Y., Gao, J-F., Feng, F-Q., Liu, C., Peng, Y-Z., & Wang, S-Y. (2012). The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chemical Engineering Journal, 179, 8–18. DOİ: https://doi.org/10.1016/j.cej.2011.05.107.
  • Fan, J., Guo, Y., Wang, J., & Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904–910. DOİ: https://doi.org/10.1016/j.jhazmat.2008.11.091.
  • Chen, J.L., Al-Abed, S.R., Ryan, J.A., & Li, Z. (2001). Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials, 83, 243–254. DOİ: https://doi.org/10.1016/S0304-3894(01)00193-5.
  • Sun, Y., Li, J., Huang, T., & Guan, X. (2016). The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Research, 100, 277–295. DOİ: https://doi.org/10.1016/j.watres.2016.05.031.
  • Yang, G.C.C., & Lee, H.L. (2005). Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research, 39:884–894. DOİ: https://doi.org/10.1016/j.watres.2004.11.030.
  • Donadelli, J.A., Carlos, L., Arques, A., & García Einschlag, F.S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61. DOİ: https://doi.org/10.1016/j.apcatb.2018.02.057.
  • Cwiertny, D.M., & Roberts, A.L. (2005). On the nonlinear relationship between kobs and reductant mass loading in iron batch systems. Environmental Science & Technology, 39, 8948–8957. DOİ: http://dx.doi.org/10.1021/es050472j.
  • Li, J., Li, Y., & Meng, Q. (2010). Removal of nitrate by zero-valent iron and pillared bentonite. J. Hazard. Mater., 174, 188-193. DOİ: http://doi.org/10.1016/j.jhazmat.2009.09.035.
  • Le, C., Wu, J-H., Li, P., Wang, X., Zhu, N-W., Wu, P-X., & Yang, B. (2011). Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron. Water Science Technology, 64(3), 754-759. DOİ: https://doi.org/10.2166/wst.2011.708.
  • Arabi, S., & Sohrabi, M. (2014). Removal of methylene blue, a basic dye, from aqueous solutions using nano-zerovalent iron. Water Science & Technology, 70 (1), 24–31. DOİ: https://doi.org/10.2166/wst.2014.189.
  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10 (S1), S1445-S1451. DOİ: https://doi.org/10.1016/j.arabjc.2013.04.021.
  • Davarnejad, R., Azizi, A., Mohammadi, M., & Mansoori, S. (2020). A green technique for synthesising iron oxide nanoparticles by extract of centaurea cyanus plant: an optimised adsorption process for methylene blue. International Journal of Environmental Analytical Chemistry. DOİ: https://doi.org/10.1080/03067319.2020.1756273.
  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe (On the theory of so-called adsorption of soluble substances). Kungliga svenska vetenskaps akademiens. Handlingar, 24, 1-39.
  • Ho, Y.-S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76, 183-191. DOİ: https://doi.org/10.1205/095758298529326.
  • Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. Journal of Nanostructure in Chemistry, 3(55). DOİ: https://doi.org/10.1186/2193-8865-3-55.
  • Sahoo, T., & Prélot, B. (2020). Adsorption processes for the removal of contaminants from wastewater, Kitap Adı: Nanomaterials for the Detection and Removal of Wastewater Pollutants, 161-222. DOİ: https://doi.org/10.1016/B978-0-12-818489-9.00007-4.
  • Hubbe, M.A., Azizian, S., & Douven, S. (2019). Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources, 14(3), 7582-7626. DOİ: https://doi.org/10.15376/BIORES.14.3.7582-7626.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burçin Yıldız 0000-0001-9750-7278

Publication Date May 31, 2023
Submission Date June 16, 2022
Acceptance Date February 13, 2023
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

APA Yıldız, B. (2023). Mikro Ölçekli Sıfır Değerlikli Demir (mZVI) Partikülü ile Sulu Çözeltilerden C.I. Vat Green 1 Boyasının Gideriminin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(1), 54-67. https://doi.org/10.35193/bseufbd.1131538