Research Article
BibTex RIS Cite

Frequency Tunable PIFA Design Based on Meander Line Elements

Year 2023, Volume: 10 Issue: 2, 309 - 317, 30.11.2023
https://doi.org/10.35193/bseufbd.1195780

Abstract

In this study, a new electrically frequency tunable planar inverted-F antenna (PIFA) design is proposed for WLAN and WiMAX applications. The main radiator of the antenna with dimensions of 30 × 25 × 10 mm3
consists of unsymmetrical meander line elements and the frequency response can be adjusted dynamically by means of a PIN diode used in the optimum position between these elements. The prototype fabrication of the antenna, whose numerical design was carried out using Ansoft-HFSS and Microwave CST studio simulation software, was also realized, and return loss measurements were taken for the on/off states of the diode. While the proposed antenna shows a single bant resonance in the WiMAX band in the off state of the diode, it resonates in the 2.4 and 5.2 GHz WLAN bands in the on state. In addition, the realized gain values of the antenna, which exhibits very uniform radiation characteristics in the relevant frequency bands for the E and H-planes, are between 2-4 dBi.

References

  • [Iqbal, A Tiang, J. J., Wong, S. K., M., Alibakhshikenari, Falcone, F., & Limiti, E. (2020). Miniaturization trends in substrate integrated waveguide (SIW) filters: a review, IEEE Access, 8, 223287-223305.
  • Ghaffar, A., Altaf, A., Aneja, A., Jun Li, X., Khan, S., Alibakhshikenari, M., Flalcone, F. & Limiti, E. (2022). A Frequency reconfigurable compact planar inverted-F antenna for portable devices, Hindawi International Journal of Antennas and Propagation, 2022, 1-9.
  • Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks, 50 (3), 2127-2159.
  • Dong, J., Li,Y., & Zhang, B. (2011). A survey on radiation pattern reconfigurable antennas. 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 1-4.
  • Borhani, M., Rezaei, P., & Valizade, A. (2016). Design of a reconfigurable miniaturized microstrip antenna for switchable multiband systems. IEEE Antennas and Wireless Propagation Letters, 15, 822-825.
  • Lee S. W., & Sung, Y. (2015). Compact frequency reconfigurable antenna for LTE/WWAN mobile handset applications. IEEE Transactions on Antennas and Propagation, 63(10), 4572–4577.
  • Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 100 (7), 2250-2261.
  • Costantine, Y., Tawk, G., & Christodoulou, C. G. (2013). Design of reconfigurable antennas using graph models. Springer, 148.
  • Lim, J.H., Song, C.W., Jin, Z.J., & Yun, T.Y. (2013). Frequency reconfigurable planar inverted-F antenna using switchable radiator and capacitive load. IET Microwaves Antennas Propag.,7(6), 430-435.
  • [Ghaffar, A., Li, X. J., & Seet, B. C. (2017). Dual frequency band and polarization reconfigurable antenna for mobile devices. Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT), October, Chengdu, China 696-700.
  • Al-Zayed, A. S., Kourah, M. A. & Mahmoud, S. F. (2014). Frequency-reconfigurable single- and dual-band designs of a multi-mode microstrip antenna. IET Microwaves, Antennas and Propagation, 8(13), 1105-1112.
  • Al-Zayed, A. S., Kourah, M. A., & Mahmoud, S. F. (2017). Tunable H-shaped microstrip antenna with dual feding. International Journal of Antennas and Propagation, 2017, 1-6.
  • Basaran, S. C., & Sertel, K. (2015). Dual-band frequency reconfigurable monopole antenna for WLAN applications. Microwave and Optical Technology Letters, 57(1), 55-58.
  • Başaran, S. C. (2014). Design of a frequency reconfigurable monopole antenna with complementary split ring resonators. Microwave and Optical Technology Letters, 56(4), 977-979.
  • Awan, W. A., Hussain, N., Naqvi, S. A., Iqbal, A., Striker, R., Mitra, D., & Braaten, B. D. (2020). A miniaturized wideband and multi-band on-demand reconfigurable antenna for compact and portable devices. AEU - International Journal of Electronics and Communications, 122, 153266.
  • Wright, M. D., Baron, W. J., Miller, J., Tuss, J., Zeppettella, D., & Ali, M. (2018). MEMS reconfigurable broadband patch antenna for conformal applications. IEEE Transactions on Antennas and Propagation, 66 (6), 2770-2778.
  • Ding, Z., Jin, R., Geng, J., Zhu, W., & Liang, X. (2019). Varactor loaded pattern reconfigurable patch antenna with shorting pins. IEEE Transactions on Antennas and Propagation, 67(10), 6267-6277.
  • Smida, A. Iqbal, A. Selmi, M., Althuwayb A. A., & Mallat, N. K. (2021). Varactor diode-based dual-band frequency tunable multiple-input multiple-output antenna. International Journal of RF and Microwave Computer-Aided Engineering, 31(2), e22519.
  • Wang, C., Yeo, J. C., Chu, H. C., Lim, T. & Guo, Y.-X. (2018). Design of a reconfigurable patch antenna using the movement of liquid metal. IEEE Antennas and Wireless Propagation Letters, 17(6), 974-977.
  • Iqbal A., & Saraereh, O. A. (2017). A compact frequency reconfigurable monopole antenna for WiFi/WLAN applications. Progress In Electromagnetics Research Letters, 68, 79-84.
  • Thao, H. T. P., Luan, V. T. & Yem, V. V. (2016). Design of compact frequency reconfigurable planar inverf-F antenna for green wireless communications,” IET Commun., 10(18), 2567-2574.
  • Asadallah, F. A., Costantine, J. & Tawk, Y. (2018). A multiband compact reconfigurable PIFA based on nested slots. IEEE Antennas Wireless Propag. Letters, 17(2), 331-334.
  • Lee, M. W. K., Leung, K. W., & Chow, Y. L. (2014). Low cost meander line chip monopole antenna. IEEE Trans. Antennas Propag., 62(1), 442-445.
  • Chen, I.-F., & Peng, C.-M. (2011). Compact modified pentaband meander-line antenna for mobile handsets applications. IEEE Antennas Wireless Propag. Lett, 10, 607-610.
  • Minh, P. T., Duc, N. T. P., Vu, X., Chuyen, N. T. & Yem, V. V. (2017). Low profile frequency reconfigurable PIFA antenna using defected ground structure. REV Journal on Electronics and Communications., 7, 9-17.
  • Ghaffar, A., Li, X. J. & Ahmad, T. (2020). A compact frequency reconfigurable PIFA antenna for heterogeneous applications. 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, 628-630.
  • Alazemi, A. J., & Rebeiz, G. M. (2019). A tunable single-feed triple-band LTE antenna with harmonic suppression. IEEE Access, 7, 104667-104672.
  • Chaabane, G., Madrangeas, V., Chatras, M., Arnaud, E., Huitema, L., & Blondy, P. (2017). High-linearity 3-Bit frequency-tunable planar inverted-F antenna for RF applications. IEEE Antennas and Wireless Propagation Letters, 16, 983-986.

Kıvrımlı Şerit Elemanlarını Temel Alan Frekansı Ayarlanabilir Düzlemsel Evrilmiş-F Anten Tasarımı

Year 2023, Volume: 10 Issue: 2, 309 - 317, 30.11.2023
https://doi.org/10.35193/bseufbd.1195780

Abstract

Bu çalışmada, WLAN ve WiMAX uygulamaları için elektriksel olarak frekansı ayarlanabilir yeni bir düzlemsel evrilmiş-F anten (DEFA) tasarımı önerilmektedir. 30 × 25 × 10 mm3 boyutlarındaki antenin ana radyatörü simetrik olmayan kıvrımlı şerit elemanlarından oluşmakta ve frekans cevabı bu elemanlar arasında optimum konumda kullanılan bir PIN diyotu aracılığıyla dinamik olarak ayarlanabilmektedir. Sayısal tasarımı Ansoft-HFSS ve CST Microwave Studio benzetim yazılımları aracılığıyla gerçekleştirilen antenin prototip üretimi de gerçeklenerek, diyotun açık/kapalı durumları için geri dönüş kaybı ölçümleri alınmıştır. Önerilen anten diyotun kesim durumunda WiMAX bandında tek bent rezonans gösterirken, iletim durumunda 2.4 ve 5.2 GHz WLAN bantlarında rezonansa gelmektedir. Ayrıca E ve H-düzlemleri için ilgili frekans bantlarında oldukça düzgün ışıma karakteristikleri sergileyen antenin mutlak kazanç değerleri 2-4 dBi arasındadır.

References

  • [Iqbal, A Tiang, J. J., Wong, S. K., M., Alibakhshikenari, Falcone, F., & Limiti, E. (2020). Miniaturization trends in substrate integrated waveguide (SIW) filters: a review, IEEE Access, 8, 223287-223305.
  • Ghaffar, A., Altaf, A., Aneja, A., Jun Li, X., Khan, S., Alibakhshikenari, M., Flalcone, F. & Limiti, E. (2022). A Frequency reconfigurable compact planar inverted-F antenna for portable devices, Hindawi International Journal of Antennas and Propagation, 2022, 1-9.
  • Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks, 50 (3), 2127-2159.
  • Dong, J., Li,Y., & Zhang, B. (2011). A survey on radiation pattern reconfigurable antennas. 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 1-4.
  • Borhani, M., Rezaei, P., & Valizade, A. (2016). Design of a reconfigurable miniaturized microstrip antenna for switchable multiband systems. IEEE Antennas and Wireless Propagation Letters, 15, 822-825.
  • Lee S. W., & Sung, Y. (2015). Compact frequency reconfigurable antenna for LTE/WWAN mobile handset applications. IEEE Transactions on Antennas and Propagation, 63(10), 4572–4577.
  • Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 100 (7), 2250-2261.
  • Costantine, Y., Tawk, G., & Christodoulou, C. G. (2013). Design of reconfigurable antennas using graph models. Springer, 148.
  • Lim, J.H., Song, C.W., Jin, Z.J., & Yun, T.Y. (2013). Frequency reconfigurable planar inverted-F antenna using switchable radiator and capacitive load. IET Microwaves Antennas Propag.,7(6), 430-435.
  • [Ghaffar, A., Li, X. J., & Seet, B. C. (2017). Dual frequency band and polarization reconfigurable antenna for mobile devices. Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT), October, Chengdu, China 696-700.
  • Al-Zayed, A. S., Kourah, M. A. & Mahmoud, S. F. (2014). Frequency-reconfigurable single- and dual-band designs of a multi-mode microstrip antenna. IET Microwaves, Antennas and Propagation, 8(13), 1105-1112.
  • Al-Zayed, A. S., Kourah, M. A., & Mahmoud, S. F. (2017). Tunable H-shaped microstrip antenna with dual feding. International Journal of Antennas and Propagation, 2017, 1-6.
  • Basaran, S. C., & Sertel, K. (2015). Dual-band frequency reconfigurable monopole antenna for WLAN applications. Microwave and Optical Technology Letters, 57(1), 55-58.
  • Başaran, S. C. (2014). Design of a frequency reconfigurable monopole antenna with complementary split ring resonators. Microwave and Optical Technology Letters, 56(4), 977-979.
  • Awan, W. A., Hussain, N., Naqvi, S. A., Iqbal, A., Striker, R., Mitra, D., & Braaten, B. D. (2020). A miniaturized wideband and multi-band on-demand reconfigurable antenna for compact and portable devices. AEU - International Journal of Electronics and Communications, 122, 153266.
  • Wright, M. D., Baron, W. J., Miller, J., Tuss, J., Zeppettella, D., & Ali, M. (2018). MEMS reconfigurable broadband patch antenna for conformal applications. IEEE Transactions on Antennas and Propagation, 66 (6), 2770-2778.
  • Ding, Z., Jin, R., Geng, J., Zhu, W., & Liang, X. (2019). Varactor loaded pattern reconfigurable patch antenna with shorting pins. IEEE Transactions on Antennas and Propagation, 67(10), 6267-6277.
  • Smida, A. Iqbal, A. Selmi, M., Althuwayb A. A., & Mallat, N. K. (2021). Varactor diode-based dual-band frequency tunable multiple-input multiple-output antenna. International Journal of RF and Microwave Computer-Aided Engineering, 31(2), e22519.
  • Wang, C., Yeo, J. C., Chu, H. C., Lim, T. & Guo, Y.-X. (2018). Design of a reconfigurable patch antenna using the movement of liquid metal. IEEE Antennas and Wireless Propagation Letters, 17(6), 974-977.
  • Iqbal A., & Saraereh, O. A. (2017). A compact frequency reconfigurable monopole antenna for WiFi/WLAN applications. Progress In Electromagnetics Research Letters, 68, 79-84.
  • Thao, H. T. P., Luan, V. T. & Yem, V. V. (2016). Design of compact frequency reconfigurable planar inverf-F antenna for green wireless communications,” IET Commun., 10(18), 2567-2574.
  • Asadallah, F. A., Costantine, J. & Tawk, Y. (2018). A multiband compact reconfigurable PIFA based on nested slots. IEEE Antennas Wireless Propag. Letters, 17(2), 331-334.
  • Lee, M. W. K., Leung, K. W., & Chow, Y. L. (2014). Low cost meander line chip monopole antenna. IEEE Trans. Antennas Propag., 62(1), 442-445.
  • Chen, I.-F., & Peng, C.-M. (2011). Compact modified pentaband meander-line antenna for mobile handsets applications. IEEE Antennas Wireless Propag. Lett, 10, 607-610.
  • Minh, P. T., Duc, N. T. P., Vu, X., Chuyen, N. T. & Yem, V. V. (2017). Low profile frequency reconfigurable PIFA antenna using defected ground structure. REV Journal on Electronics and Communications., 7, 9-17.
  • Ghaffar, A., Li, X. J. & Ahmad, T. (2020). A compact frequency reconfigurable PIFA antenna for heterogeneous applications. 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, 628-630.
  • Alazemi, A. J., & Rebeiz, G. M. (2019). A tunable single-feed triple-band LTE antenna with harmonic suppression. IEEE Access, 7, 104667-104672.
  • Chaabane, G., Madrangeas, V., Chatras, M., Arnaud, E., Huitema, L., & Blondy, P. (2017). High-linearity 3-Bit frequency-tunable planar inverted-F antenna for RF applications. IEEE Antennas and Wireless Propagation Letters, 16, 983-986.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burçin Ramazan 0000-0003-2008-876X

Ahmet Rıfat Görgün 0000-0003-1416-5570

Siddik Cumhur Başaran 0000-0001-6432-4512

Publication Date November 30, 2023
Submission Date October 31, 2022
Acceptance Date April 26, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

APA Ramazan, B., Görgün, A. R., & Başaran, S. C. (2023). Kıvrımlı Şerit Elemanlarını Temel Alan Frekansı Ayarlanabilir Düzlemsel Evrilmiş-F Anten Tasarımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(2), 309-317. https://doi.org/10.35193/bseufbd.1195780