Research Article
BibTex RIS Cite

Uranyum(VI) İyonlarının Kula Volkaniti Üzerine Adsorpsiyonu

Year 2024, Volume: 11 Issue: 1, 93 - 103, 31.05.2024
https://doi.org/10.35193/bseufbd.1263685

Abstract

Bu çalışmada, hem ekonomik hem de doğal olarak temin edilen doğal Kula volkanit adsorbanı üzerine sulu çözeltilerden U(VI) metal iyonlarının adsorplanma kabiliyeti karakterize edilmiştir. U(VI) iyonlarının doğal Kula volkanit üzerine adsorpsiyonunu etkileyen parametrelerden pH, adsorban madde miktarı, uranyum iyonlarının konsantrasyonu, sıcaklık ve temas sürenin etkisi incelenmiştir. U(VI) iyonunun doğal Kula volkanit üzerine adsorpsiyonunun deneysel sonuçları Langmuir, Freundlich ve D-R izoterm modellerine uygulanarak, değerlendirilmiş ve elde edilen verilere göre U(VI) iyonunun adsorpsiyonu en iyi Langmuir ve D-R izotermlerine uygunluk göstermiştir. Çalışmada beş farklı (298.15, 303.15, 308.15, 313.15, 318.15 K) sıcaklıkta bir dizi deneyler yapılarak, uranyum iyonu için ∆Go, ∆Ho ve ∆So gibi termodinamik parametreleri hesaplanmış ve adsorpsiyonun kendiliğinden ve endotermik olduğu tespit edilmiştir. Bu çalışmadan elde edilen sonuçlara göre sulu çözeltilerden U(VI) iyonlarının gideriminde doğal Kula volkanitin adsorplama kabiliyetinin oldukça yüksek olduğu söylenebilir.

References

  • Yıldız, N. (2001). Toprak Kirletici Bazı Ağır Metallerin (Zn, Cu, Cd, Pb, Co ve Ni) Belirlenmesinde Kullanılan Yöntemler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 32(2), 207-213.
  • Bargar, J. R., Reitmeyer, R., Lenhart, J. J., & Davis, J. A. (2000). Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica et Cosmochimica Acta 64, 2737–2749.
  • Shawky, S., Geleel, M.A., & Aly, A. (2005). Sorption of uranium by nonliving water hyacinth roots. Journal of Radioanalitical and Nuclear Chemistry, 265, 81-84.
  • Al Asheh, S., Banat, F., Al Omari, R., & Duvnjak, Z. (2000). Prediction of Binary Sorption Isotherm for The Sorption of Heavy Metal by Pine bark Using Single Isotherm Data. Chemosphore, 41, 659-665.
  • Selvi, K., Pattabhi, S., & Kardivelu, K. (2001). Removal of Cr(VI) from Aqueous Solution by Adsorption Onto Activated Carbon. Bioresource Technology, 80, 87-89
  • Lai, C.-H., Chen, C.-Y., Wei, B.-L., & Yeh, S.-H. (2002). Cadmium adsorption on goethitecoated sand in the presence of humic acid. Water Research, 36(20), 4943–4950.
  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, B97, 219-243.
  • Aziz, H. A., Adlan, M. N., & Ariffin, K.S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post-treatment by high quality limestone. Bioresource Technology, 99 (6), 1578-1583.
  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469-2479.
  • Gupta, S. S., & Bhattacharyya, K. G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87(1), 46-58.
  • Eren, B., & Afsin, B. (2007). An Investigation of Cu(II) Adsorption by Raw and Acid Activated Bentonite: A Combined Potentiometric, Thermodynamic, XRD, IR, DTA Study. Journal of Hazardous Material, 151, 682-691.
  • Papelis. C., & Um, W. (2003). Nevada Site Office National Nuclear Security Administration US Department of Energy Las Vegas, Nevada, Publication no. 45189.
  • Tachi, Y., Shibutani, T., Sato, H., & Yui, M. (1998). Sorption and diffusion behavior of selenium in tuff. Journal of Contaminant Hydrolgoy, 35, 77–89.
  • Cerjan Stefanovic, S., Zabukovec Logar, N., Margeta, K., Novak Tusar N., Arcon, I., Maver, K., Kovac, J., & Kaucic, V. (2007) Structural investigation of Zn2+ sorption on clinoptilolite tuff from the Vranjska Banja deposit in Serbia. Microporous Mesoporous Mater. 105, 251-259.
  • Anghel, I., Turin, H. J., & Reimus, P. W. (2002). Lithium sorption to Yucca Mountain tuffs. Applied Geochemistry, 17(6), 819–824 27.
  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280, 309-314.
  • Maranon, E., Ulmanub, M., Fernandez, Y., Anger, I., & Castrillon, L. (2006). Removal of ammonium from aqueous solutions with volcanic tuff. Journal of Hazardous Materials, 137, 1402-1409.
  • Cintoli, R., Di Sabatino, B., Galeotti, L., & Bruno, G. (1995). Ammonium uptake by zeolite and. treatment in UASB reactor of piggery wastewater. Water Science and Technology, 32,73-81.
  • Ahmed, S., Chughtai, S., & Keane, M. A. (1998). The removal of cadmium and lead from aqueous solution by ion exchange with Na Y zeolite, Separation and Purification Technology, 13(1), 57-64.
  • Papelis, C., & Um, W. (2003). Nevada Site Office National Nuclear Security Administration US Department of Energy Las Vegas, Nevada, Publication no. 45189.
  • Colella, C. (1999). Natural zeolites in environmentally friendly processes and applications. Studies in Surface Science and Catalysis, 125, 641-655.
  • Krestou, A., Xenidis, A., & Panias, D. (2003). Mechanism of aqueous uranium (VI) uptake by natural zeolitic tuff. Minerals Engineering, 16, 1363-1370.
  • Humelnicu, D., Drochioiu, Sturza, G. M. I., Cecal, A., & Popa K. (2006). Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry, 270(3) 637-640.
  • Corbin, D. R., Burgess, B. F., Vega, A. J., & Farlee, R. D. (1987). Comparison of analytical techniques for the determination of silicon and aluminum content in zeolites Analytical Chemistry, 59, 2722-2728.
  • Francois, C.A. (1958). Rapid spectrophotometric determination of submilligram quantities of uranium, Analytical Chemistry, 30, 50-54.
  • Freundlich, H. M. F., (1906). Over the Adsorption in Solution. Journal of Physical Chemistry, 57, 385-470.
  • Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. Journal of Applied Chemistry, 3, 38-45.
  • Ketcha J.M., Dogmo, S., & Dingka'a, D., (2012) Kinetic and Thermodynamic Studies of the Adsorption of Nickel (II) Ion from Aqueous Solution by Smectic Clay from Sagba-Cameroon. International Journal cursus Research, 4(5), 162-167.
  • Saleem, M., Afzal, M., Qadeer, R., & Hanif, J. (1992). Selective Adsorption of Uranium on Activated Charcoal from Electrolytic Aqueous Solutions. Separation Science Technology. 27(2), 239-253.
  • Khan, S. A., Rehman, R., & Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15(4), 271-282.
  • Akyıl, S., Aslani, M. A. A., & Aytas, S. (1998). Distribution of Uranium on Zeolite X and Investigation of Thermodynamic Parameters for this System. Journal of Alloys Compounds, 27, 769-773.
  • Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, Wiley, 2004.
  • Kütahyalı, C., Çetinkaya, B., Acar, M.B., Işık, N.O., & Cireli, İ. (2012). Investigation of strontium sorption onto Kula volcanics using Central Composite Design. Journal of Hazardous Materials, 201-202, 115-124.
  • Sprynskyy, M., Kovalchuk, I., & Buszewski, B. (2010). The separation of uranium ions by natural and modified diatomite from aqueous solution. Journal of Hazardous Materials, 181, 700-707.
  • Kaynar, U.H., Eral, M. (2018). Investigation of Uranium (VI) Adsorption on Kula Volcanics Modified with HDTMA. International Journal of Scientific and Technological Research, 4(2), ISSN 2422-8702.
  • Saleem, M., Afzal, M., Qadeer, R., & Hanif, J. (1992). Selective Adsorption of Uranium on Activated Charcoal from Electrolytic Aqueous Solutions. Separation Science Techology. 27(2), 239-253.
  • Sorg, T. J. (1991). Radon, Radium and Uranium in Drinking Water. Removal of uranium from drinking water by conventional treatment methods, Cothern and Rebers (Eds) Lewis Publishers, Michigan. ISBN 0873712072. 173-191.
  • Qadeer, R., & Saleem, M. (1997). Adsorption UO22+ ions on activated charcoal: pH effect. Adsorption Sceince and Technology, 15, 373-376.
  • Hizal, J., Kanmaz, N., & Yılmazoğlu, M. (2023). Evaluation of humic acid embedded Chitosan/PVA composite performance in the removal of uranyl ions, Materials Chemistry and Physics, 299, 127483.
  • Ayawei, N., Angaye, S. S., Wankasi, D., & Dikio, E. D. (2015). Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution. Open Journal of Physical Chemistry, 5 (03), 56-70.
  • Yusan, S., Aslani, M.A.A., Turkozu, D.A., Aycan, H.A., Aytas, S., & Akyil, S. (2010). Adsorption and thermodynamic behaviour of U(VI) on the Tendurek volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry, 283, 231-238.
  • Saeed, M. M. (2003). Adsorption profile and thermodynamic parameters of the preconcentration of Eu (III) on 2-thenoyltrifluoroacetone loaded polyurethane (PUR) foam. Journal of Radioanalytical and Nuclear Chemistry, 256(1), 73-80.
  • Smith, J. M. (1981). Chemical Engineering Kinetics, 3rd edn. McGrawHill, New York, 310-322.
  • Yavuz, O., Altunkaynak, Y., & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37, 948-952.

Adsorption of Uranium(VI) Ions on the Kula Volcanite

Year 2024, Volume: 11 Issue: 1, 93 - 103, 31.05.2024
https://doi.org/10.35193/bseufbd.1263685

Abstract

In this study, the ability to adsorb U(VI) metal ions from aqueous solutions on the natural Kula volcanic adsorbent, which is both economically and naturally supplied, was characterized. The effects of pH, amount of adsorbent material, concentration of uranium ions, temperature, and contact time, which are among the parameters affecting the adsorption of U(VI) ions on the natural Kula volcanite, were investigated. According to the experimental results of the adsorption of U(VI) ions on natural Kula volcanite, Langmuir, Freundlich, and D-R isotherm models were evaluated, and according to the obtained data, the adsorption of U(VI) ions showed the best compatibility with Langmuir and D-R isotherms. In the study, a series of experiments were carried out at five different (298.15, 303.15, 308.15, 313.15, 318.15 K) temperatures, and thermodynamic parameters, such as ∆Go, ∆Ho, and ∆So for the uranium ion were calculated, and it was determined that the adsorption was spontaneous and endothermic. According to the results obtained from this study, it can be said that the adsorption ability of natural Kula volcanite in removing U(VI) ions from aqueous solutions is quite high.

References

  • Yıldız, N. (2001). Toprak Kirletici Bazı Ağır Metallerin (Zn, Cu, Cd, Pb, Co ve Ni) Belirlenmesinde Kullanılan Yöntemler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 32(2), 207-213.
  • Bargar, J. R., Reitmeyer, R., Lenhart, J. J., & Davis, J. A. (2000). Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica et Cosmochimica Acta 64, 2737–2749.
  • Shawky, S., Geleel, M.A., & Aly, A. (2005). Sorption of uranium by nonliving water hyacinth roots. Journal of Radioanalitical and Nuclear Chemistry, 265, 81-84.
  • Al Asheh, S., Banat, F., Al Omari, R., & Duvnjak, Z. (2000). Prediction of Binary Sorption Isotherm for The Sorption of Heavy Metal by Pine bark Using Single Isotherm Data. Chemosphore, 41, 659-665.
  • Selvi, K., Pattabhi, S., & Kardivelu, K. (2001). Removal of Cr(VI) from Aqueous Solution by Adsorption Onto Activated Carbon. Bioresource Technology, 80, 87-89
  • Lai, C.-H., Chen, C.-Y., Wei, B.-L., & Yeh, S.-H. (2002). Cadmium adsorption on goethitecoated sand in the presence of humic acid. Water Research, 36(20), 4943–4950.
  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, B97, 219-243.
  • Aziz, H. A., Adlan, M. N., & Ariffin, K.S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post-treatment by high quality limestone. Bioresource Technology, 99 (6), 1578-1583.
  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469-2479.
  • Gupta, S. S., & Bhattacharyya, K. G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87(1), 46-58.
  • Eren, B., & Afsin, B. (2007). An Investigation of Cu(II) Adsorption by Raw and Acid Activated Bentonite: A Combined Potentiometric, Thermodynamic, XRD, IR, DTA Study. Journal of Hazardous Material, 151, 682-691.
  • Papelis. C., & Um, W. (2003). Nevada Site Office National Nuclear Security Administration US Department of Energy Las Vegas, Nevada, Publication no. 45189.
  • Tachi, Y., Shibutani, T., Sato, H., & Yui, M. (1998). Sorption and diffusion behavior of selenium in tuff. Journal of Contaminant Hydrolgoy, 35, 77–89.
  • Cerjan Stefanovic, S., Zabukovec Logar, N., Margeta, K., Novak Tusar N., Arcon, I., Maver, K., Kovac, J., & Kaucic, V. (2007) Structural investigation of Zn2+ sorption on clinoptilolite tuff from the Vranjska Banja deposit in Serbia. Microporous Mesoporous Mater. 105, 251-259.
  • Anghel, I., Turin, H. J., & Reimus, P. W. (2002). Lithium sorption to Yucca Mountain tuffs. Applied Geochemistry, 17(6), 819–824 27.
  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280, 309-314.
  • Maranon, E., Ulmanub, M., Fernandez, Y., Anger, I., & Castrillon, L. (2006). Removal of ammonium from aqueous solutions with volcanic tuff. Journal of Hazardous Materials, 137, 1402-1409.
  • Cintoli, R., Di Sabatino, B., Galeotti, L., & Bruno, G. (1995). Ammonium uptake by zeolite and. treatment in UASB reactor of piggery wastewater. Water Science and Technology, 32,73-81.
  • Ahmed, S., Chughtai, S., & Keane, M. A. (1998). The removal of cadmium and lead from aqueous solution by ion exchange with Na Y zeolite, Separation and Purification Technology, 13(1), 57-64.
  • Papelis, C., & Um, W. (2003). Nevada Site Office National Nuclear Security Administration US Department of Energy Las Vegas, Nevada, Publication no. 45189.
  • Colella, C. (1999). Natural zeolites in environmentally friendly processes and applications. Studies in Surface Science and Catalysis, 125, 641-655.
  • Krestou, A., Xenidis, A., & Panias, D. (2003). Mechanism of aqueous uranium (VI) uptake by natural zeolitic tuff. Minerals Engineering, 16, 1363-1370.
  • Humelnicu, D., Drochioiu, Sturza, G. M. I., Cecal, A., & Popa K. (2006). Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry, 270(3) 637-640.
  • Corbin, D. R., Burgess, B. F., Vega, A. J., & Farlee, R. D. (1987). Comparison of analytical techniques for the determination of silicon and aluminum content in zeolites Analytical Chemistry, 59, 2722-2728.
  • Francois, C.A. (1958). Rapid spectrophotometric determination of submilligram quantities of uranium, Analytical Chemistry, 30, 50-54.
  • Freundlich, H. M. F., (1906). Over the Adsorption in Solution. Journal of Physical Chemistry, 57, 385-470.
  • Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. Journal of Applied Chemistry, 3, 38-45.
  • Ketcha J.M., Dogmo, S., & Dingka'a, D., (2012) Kinetic and Thermodynamic Studies of the Adsorption of Nickel (II) Ion from Aqueous Solution by Smectic Clay from Sagba-Cameroon. International Journal cursus Research, 4(5), 162-167.
  • Saleem, M., Afzal, M., Qadeer, R., & Hanif, J. (1992). Selective Adsorption of Uranium on Activated Charcoal from Electrolytic Aqueous Solutions. Separation Science Technology. 27(2), 239-253.
  • Khan, S. A., Rehman, R., & Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15(4), 271-282.
  • Akyıl, S., Aslani, M. A. A., & Aytas, S. (1998). Distribution of Uranium on Zeolite X and Investigation of Thermodynamic Parameters for this System. Journal of Alloys Compounds, 27, 769-773.
  • Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, Wiley, 2004.
  • Kütahyalı, C., Çetinkaya, B., Acar, M.B., Işık, N.O., & Cireli, İ. (2012). Investigation of strontium sorption onto Kula volcanics using Central Composite Design. Journal of Hazardous Materials, 201-202, 115-124.
  • Sprynskyy, M., Kovalchuk, I., & Buszewski, B. (2010). The separation of uranium ions by natural and modified diatomite from aqueous solution. Journal of Hazardous Materials, 181, 700-707.
  • Kaynar, U.H., Eral, M. (2018). Investigation of Uranium (VI) Adsorption on Kula Volcanics Modified with HDTMA. International Journal of Scientific and Technological Research, 4(2), ISSN 2422-8702.
  • Saleem, M., Afzal, M., Qadeer, R., & Hanif, J. (1992). Selective Adsorption of Uranium on Activated Charcoal from Electrolytic Aqueous Solutions. Separation Science Techology. 27(2), 239-253.
  • Sorg, T. J. (1991). Radon, Radium and Uranium in Drinking Water. Removal of uranium from drinking water by conventional treatment methods, Cothern and Rebers (Eds) Lewis Publishers, Michigan. ISBN 0873712072. 173-191.
  • Qadeer, R., & Saleem, M. (1997). Adsorption UO22+ ions on activated charcoal: pH effect. Adsorption Sceince and Technology, 15, 373-376.
  • Hizal, J., Kanmaz, N., & Yılmazoğlu, M. (2023). Evaluation of humic acid embedded Chitosan/PVA composite performance in the removal of uranyl ions, Materials Chemistry and Physics, 299, 127483.
  • Ayawei, N., Angaye, S. S., Wankasi, D., & Dikio, E. D. (2015). Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution. Open Journal of Physical Chemistry, 5 (03), 56-70.
  • Yusan, S., Aslani, M.A.A., Turkozu, D.A., Aycan, H.A., Aytas, S., & Akyil, S. (2010). Adsorption and thermodynamic behaviour of U(VI) on the Tendurek volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry, 283, 231-238.
  • Saeed, M. M. (2003). Adsorption profile and thermodynamic parameters of the preconcentration of Eu (III) on 2-thenoyltrifluoroacetone loaded polyurethane (PUR) foam. Journal of Radioanalytical and Nuclear Chemistry, 256(1), 73-80.
  • Smith, J. M. (1981). Chemical Engineering Kinetics, 3rd edn. McGrawHill, New York, 310-322.
  • Yavuz, O., Altunkaynak, Y., & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37, 948-952.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Electrochemistry
Journal Section Articles
Authors

Ramazan Donat 0000-0002-5701-5030

Publication Date May 31, 2024
Submission Date March 11, 2023
Acceptance Date July 19, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Donat, R. (2024). Uranyum(VI) İyonlarının Kula Volkaniti Üzerine Adsorpsiyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 93-103. https://doi.org/10.35193/bseufbd.1263685