Research Article
BibTex RIS Cite

Mikrobiyal Yakıt Hücrelerinde PROMETHEE Yaklaşımı ile Uygun Anot Elektrodu Modifikasyonunun Belirlenmesi

Year 2024, Volume: 11 Issue: 1, 116 - 127, 31.05.2024
https://doi.org/10.35193/bseufbd.1267886

Abstract

İklim değişikliği ve artan küresel enerji talebi, önemli derecede bilimsel ve teknolojik gelişmeler gerektiren bir sürdürülebilirlik sorunudur. Son zamanlarda, mikrobiyal yakıt hücresinin (MYH) bu konudaki önemi, eşzamanlı olarak atık arıtma ve elektrik enerjisi üretimi yeteneği nedeniyle oldukça ilgi çekmektedir. Bu çalışmada MYH sistemlerinin performansını etkileyen en önemli unsurlardan olan geleneksel anot elektrodunun modifikasyon alternatifleri değerlendirilmiştir. Modifikasyon yöntemleri arasında öne çıkan yaklaşımlar geleneksel anot materyalinin nanometal, iletken polimer ve nanokarbon yapılı malzemeler ile kaplanmasıdır. Belirlenen bu modifikasyon alternatifleri güç/akım yoğunluğundaki artış, kaplama materyalinin maliyeti, elektriksel iletkenliği, yüzey alanı ve biyo-uyumluluğu kriterleri açısından değerlendirilmiştir. Alternatiflerin kriter değerleri literatür araştırması ile belirlenmiştir. Alternatif modifikasyon yöntemleri düşük maliyet ve yüksek güç/akım yoğunluğu, elektriksel iletkenlik, yüzey alanı ve biyo-uyumluluk kriterlerine göre PROMETHEE yaklaşımı kullanılarak sıralanmıştır. PROMETHEE II’de alternatiflerin tercih sıralaması metal bazlı nanomateryal ile kaplama>karbon bazlı nanomalzeme ile kaplama>iletken polimer ile kaplama şeklinde belirlenmiştir. Rainbow analizi ile metal bazlı nanomateryal kaplama alternatifinin seçiminde güç/akım yoğunluğundaki artış, kaplama materyalinin iletkenliği ve maliyeti kriterlerinin pozitif etki, biyo-uyumluluk ve kaplama materyalinin yüzey alanı kriterlerinin ise negatif yönde etki gösterdiği belirlenmiştir.

References

  • Rani, G., Jaswal, V., Yogalakshmi, K.N. (2022). Anode modification: An approach to improve power generation in microbial fuel cells (MFCs). Development in Wastewater Treatment Research and Processes, 133-152
  • Dwivedi, K. A., Huang, S. J., & Wang, C. T. (2022). Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review. Chemosphere, 287, 132248.
  • Hernández-Fernández, F. J., Pérez De Los Ríos, A., Salar-García, M. J., Ortiz-Martínez, V. M., Lozano-Blanco, L. J., Godínez, C., Tomás-Alonso, F., & Quesada-Medina, J. (2015). Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Processing Technology, 138, 284–297.
  • Du, H., Li, F., Huang, K., Li, W., & Feng, C. (2017). Potato waste treatment by microbial fuel cell. evaluation based on electricity generation, organic matter removal and microbial structure. Environment Protection Engineering, 43(1), 5–18.
  • Li, Y., Wu, Y., Puranik, S., Lei, Y., Vadas, T., & Li, B. (2014). Metals as electron acceptors in single-chamber microbial fuel cells. Journal of Power Sources, 269, 430–439.
  • Logan, B. E. (2008). Microbial Fuel Cells. John Wiley & Sons, Ltd.
  • Zhu, Q., Hu, J., Liu, B., Hu, S., Liang, S., Xiao, K., Yang, J., & Hou, H. (2021). Recent Advances on the Development of Functional Materials in Microbial Fuel Cells: From Fundamentals to Challenges and Outlooks. Energy & Environmental Materials, 5(2), 401–426.
  • Cui, H. F., Du, L., Guo, P. B., Zhu, B., & Luong, J. H. T. (2015). Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. Journal of Power Sources, 283, 46–53.
  • Kang, Y. L., Ibrahim, S., & Pichiah, S. (2015). Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresource Technology, 189, 364–369.
  • Kong, S., Zhao, J., Li, F., Chen, T., & Wang, Z. (2022). Advances in Anode Materials for Microbial Fuel Cells. Energy Technology, 10(12), 2200824.
  • Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics, 26(6), 3000–3004.
  • Mashkour, M., Rahimnejad, M., Mashkour, M., & Soavi, F. (2020). Electro-polymerized polyaniline modified conductive bacterial cellulose anode for supercapacitive microbial fuel cells and studying the role of anodic biofilm in the capacitive behavior. Journal of Power Sources, 478, 228822.
  • Quan, X., Sun, B., & Xu, H. (2015). Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells. Electrochimica Acta, 182, 815–820.
  • Yaqoob, A. A., Ibrahim, M. N. M., Rafatullah, M., Chua, Y. S., Ahmad, A., & Umar, K. (2020). Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials, 13(9), 2078.
  • Ak, N., Orhan, A., Erensoy, A., & Çek, N. (2020). Sediment Mikrobiyal Yakıt Hücrelerinde Bakır ve Grafit Katot Elektrotların Kullanımı. BŞEÜ Fen Bilimleri Dergisi, 7(2), 942-951.
  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229–1232.
  • Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology, 41(9), 3341–3346.
  • Mustakeem. (2015). Electrode materials for microbial fuel cells: Nanomaterial approach. Materials for Renewable and Sustainable Energy, 4(4), 1–11.
  • Erbay, C., Pu, X., Choi, W., Choi, M. J., Ryu, Y., Hou, H., Lin, F., De Figueiredo, P., Yu, C., & Han, A. (2015). Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells. Journal of Power Sources, 280, 347–354.
  • Dumitru, A., & Scott, K. (2016). Anode Materials for Microbial Fuel Cells. In Microbial Electrochemical and Fuel Cells: Fundamentals and Applications, 117–152.
  • Hindatu, Y., Annuar, M. S. M., & Gumel, A. M. (2017, June 1). Mini-review: Anode modification for improved performance of microbial fuel cell. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
  • Sun, M., Zhang, F., Tong, Z. H., Sheng, G. P., Chen, Y. Z., Zhao, Y., Chen, Y. P., Zhou, S. Y., Liu, G., Tian, Y. C., & Yu, H. Q. (2010). A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 26(2), 338–343.
  • Bahamonde Soria, R., Chinchin, B. D., Arboleda, D., Zhao, Y., Bonilla, P., Van der Bruggen, B., & Luis, P. (2022). Effect of the bio-inspired modification of low-cost membranes with TiO2:ZnO as microbial fuel cell membranes. Chemosphere, 291, 132840.
  • Ma, J., Zhang, J., Zhang, Y., Guo, Q., Hu, T., Xiao, H., Lu, W., Jia, J. (2023). Progress on anodic modification materials and future development directions in microbial fuel cells. Journal of Power Sources, 556 232486.
  • Savla, N., Anand, R., Pandit, S., & Prasad, R. (2020). Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance. Journal of Renewable Materials, 8(12), 1581–1605.
  • Sonawane, J. M., Yadav, A., Ghosh, P. C., & Adeloju, S. B. (2017). Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosensors and Bioelectronics, 90, 558–576.
  • Ci, S., Cai, P., Wen, Z., & Li, J. (2015). Graphene-based electrode materials for microbial fuel cells. Science China Materials, 58(6).
  • Wilberforce, T., Abdelkareem, M. A., Elsaid, K., Olabi, A. G., & Sayed, E. T. (2022). Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy, 240, 122478.
  • X. Xie, L. Hu, M. Pasta, G.F. Wells, D. Kong, C.S. Criddle, Y. Cui, Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells, Nano Letters. 11 (2011) 291–296.
  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427–4435.
  • Aghababaie, M., Farhadian, M., Jeihanipour, A., & Biria, D. (2015). Effective factors on the performance of microbial fuel cells in wastewater treatment – a review. Environmental Technology Reviews, 4(1), 71–89.
  • Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X., & Yu, C. (2011). A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 196(13), 5402–5407.
  • Guo, W., Cui, Y., Song, H., & Sun, J. (2014). Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess and Biosystems Engineering, 37(9), 1749–1758.
  • Kirubaharan, C.J., Kumar, G.G., Sha, C., Zhou, D., Yang, H., Nahm, K.S., Raj, B.S., Zhang, Y., Yong, Y.C. (2019). Facile fabrication of Au@polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells, Electrochimica Acta, 328, 135136.
  • Lyu, L., Seong, K. dong, Kim, J. M., Zhang, W., Jin, X., Kim, D. K., Jeon, Y., Kang, J., & Piao, Y. (2019). CNT/High Mass Loading MnO2/Graphene-Grafted Carbon Cloth Electrodes for High-Energy Asymmetric Supercapacitors. Nano-Micro Letters, 11(1), 1–12.
  • Xu, H., Quan, X., Xiao, Z., & Chen, L. (2018). Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chemical Engineering Journal, 335, 539–547.
  • Qiao, Y., Wu, X. S., & Li, C. M. (2014). Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells. Journal of Power Sources, 266, 226–231.
  • Yin, T., Lin, Z., Su, L., Yuan, C., & Fu, D. (2015). Preparation of vertically oriented TiO2 nanosheets modified carbon paper electrode and its enhancement to the performance of MFCs. ACS Applied Materials and Interfaces, 7(1), 400–408.
  • Zhang, C., Liang, P., Jiang, Y., & Huang, X. (2015). Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. Journal of Power Sources, 273, 580–583.
  • Tsai, H. Y., Wu, C. C., Lee, C. Y., & Shih, E. P. (2009). Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. Journal of Power Sources, 194(1), 199–205.
  • Dağdeviren, M. (2008). Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing, 4(19), 397–406.
  • Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The Promethee method. European Journal of Operational Research, 24(2), 228–238.
  • Morfoulaki, M., & Papathanasiou, J. (2021). Use of PROMETHEE MCDA Method for Ranking Alternative Measures of Sustainable Urban Mobility Planning. Mathematics, 9(6),602.
  • Mateo, S., Cañizares, P., Rodrigo, M. A., & Fernandez-Morales, F. J. (2018). Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. Applied Energy, 225, 52–59.
  • Fuel Cell Store, (y.y.). https://www.fuelcellstore.com/ (erişim 15 Mart 2023).
  • Liu, J. H., Zhang, S. L., Yu, M., An, J. W., & Li, S. M. (2013). Synthesis and Capacitance Characteristics of the Graphene Grafted Polypyrrole Composites. Journal of Inorganic Materials, 28(4), 408.
  • Liu, X. W., Chen, J. J., Huang, Y. X., Sun, X. F., Sheng, G. P., Li, D. B., Xiong, L., Zhang, Y. Y., Zhao, F., & Yu, H. Q. (2014). Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. Scientific Reports, 4.
  • Gude, G. G. (2018). Emerging Technologies for Sustainable Desalination Handbook -. Cambridge: ELSEVIER.
  • Merck | Life Science Products & Service Solutions. https://www.sigmaaldrich.com/TR/en (Erişim tarihi: 14 Mart 2023).
  • Y.C. Song, T.S. Choi, J.H. Woo, K. Yoo, J.W. Chung, C.Y. Lee, B.G. Kim, Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells, Journal of Applied Electrochemistry. 42 (2012) 391–398.
  • Nanografi Türkiye, (y.y.). https://shop.nanografi.com.tr/ (erişim 14 Mart 2023).
  • Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K., Chung, J. W., Lee, C. Y., & Kim, B. G. (2012). Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells. Journal of Applied Electrochemistry, 42(6), 391–398.
  • Nosek, D., Jachimowicz, P., & Cydzik-Kwiatkowska, A. (2020). Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. Energies, 13(24), 6596.
  • Muhammad, A., Shah, A. ul H. A., & Bilal, S. (2019). Comparative Study of the Adsorption of Acid Blue 40 on Polyaniline, Magnetic Oxide and Their Composites: Synthesis, Characterization and Application. Materials, 12(18), 2854.
  • Genç, T. (2013). PROMETHEE Yöntemi ve GAIA Düzlemi. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(1), 133–154.

Determination of Appropriate Anode Electrode Modification in Microbial Fuel Cells by the PROMETHEE Approach

Year 2024, Volume: 11 Issue: 1, 116 - 127, 31.05.2024
https://doi.org/10.35193/bseufbd.1267886

Abstract

Climate change and increasing global energy demand is a sustainability issue that requires significant scientific and technological developments. Recently, the importance of microbial fuel cell (MFC) in this regard has attracted a lot of attention due to its ability to simultaneously treat waste and generate electricity. In this study, the modification alternatives of the conventional anode electrode, which is one of the most important factors affecting the performance of MFC systems, were evaluated. Among the modification methods, the prominent approaches are coating the conventional anode material with nanometal, conductive polymer and nano-carbon materials. These modification alternatives were evaluated in terms of increase in power/current density, cost of coating material, electrical conductivity, surface area and biocompatibility criteria. Alternative modification methods were ranked according to low cost and high power/current density, electrical conductivity, surface area and biocompatibility criteria using the PROMETHEE approach. Criterion values were determined by literature research. In PROMETHEE II, the order of preference of the alternatives was determined as coating with metal-based nanomaterial>coating with carbon-based nanomaterial>coating with conductive polymer. By Rainbow analysis, it was determined that the increase in power/current density, conductivity and cost of the coating material had a positive effect in the selection of metal-based nanomaterial coating alternative, while the criteria of biocompatibility and surface area of the coating material had a negative effect.

References

  • Rani, G., Jaswal, V., Yogalakshmi, K.N. (2022). Anode modification: An approach to improve power generation in microbial fuel cells (MFCs). Development in Wastewater Treatment Research and Processes, 133-152
  • Dwivedi, K. A., Huang, S. J., & Wang, C. T. (2022). Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review. Chemosphere, 287, 132248.
  • Hernández-Fernández, F. J., Pérez De Los Ríos, A., Salar-García, M. J., Ortiz-Martínez, V. M., Lozano-Blanco, L. J., Godínez, C., Tomás-Alonso, F., & Quesada-Medina, J. (2015). Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Processing Technology, 138, 284–297.
  • Du, H., Li, F., Huang, K., Li, W., & Feng, C. (2017). Potato waste treatment by microbial fuel cell. evaluation based on electricity generation, organic matter removal and microbial structure. Environment Protection Engineering, 43(1), 5–18.
  • Li, Y., Wu, Y., Puranik, S., Lei, Y., Vadas, T., & Li, B. (2014). Metals as electron acceptors in single-chamber microbial fuel cells. Journal of Power Sources, 269, 430–439.
  • Logan, B. E. (2008). Microbial Fuel Cells. John Wiley & Sons, Ltd.
  • Zhu, Q., Hu, J., Liu, B., Hu, S., Liang, S., Xiao, K., Yang, J., & Hou, H. (2021). Recent Advances on the Development of Functional Materials in Microbial Fuel Cells: From Fundamentals to Challenges and Outlooks. Energy & Environmental Materials, 5(2), 401–426.
  • Cui, H. F., Du, L., Guo, P. B., Zhu, B., & Luong, J. H. T. (2015). Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. Journal of Power Sources, 283, 46–53.
  • Kang, Y. L., Ibrahim, S., & Pichiah, S. (2015). Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresource Technology, 189, 364–369.
  • Kong, S., Zhao, J., Li, F., Chen, T., & Wang, Z. (2022). Advances in Anode Materials for Microbial Fuel Cells. Energy Technology, 10(12), 2200824.
  • Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics, 26(6), 3000–3004.
  • Mashkour, M., Rahimnejad, M., Mashkour, M., & Soavi, F. (2020). Electro-polymerized polyaniline modified conductive bacterial cellulose anode for supercapacitive microbial fuel cells and studying the role of anodic biofilm in the capacitive behavior. Journal of Power Sources, 478, 228822.
  • Quan, X., Sun, B., & Xu, H. (2015). Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells. Electrochimica Acta, 182, 815–820.
  • Yaqoob, A. A., Ibrahim, M. N. M., Rafatullah, M., Chua, Y. S., Ahmad, A., & Umar, K. (2020). Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials, 13(9), 2078.
  • Ak, N., Orhan, A., Erensoy, A., & Çek, N. (2020). Sediment Mikrobiyal Yakıt Hücrelerinde Bakır ve Grafit Katot Elektrotların Kullanımı. BŞEÜ Fen Bilimleri Dergisi, 7(2), 942-951.
  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229–1232.
  • Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology, 41(9), 3341–3346.
  • Mustakeem. (2015). Electrode materials for microbial fuel cells: Nanomaterial approach. Materials for Renewable and Sustainable Energy, 4(4), 1–11.
  • Erbay, C., Pu, X., Choi, W., Choi, M. J., Ryu, Y., Hou, H., Lin, F., De Figueiredo, P., Yu, C., & Han, A. (2015). Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells. Journal of Power Sources, 280, 347–354.
  • Dumitru, A., & Scott, K. (2016). Anode Materials for Microbial Fuel Cells. In Microbial Electrochemical and Fuel Cells: Fundamentals and Applications, 117–152.
  • Hindatu, Y., Annuar, M. S. M., & Gumel, A. M. (2017, June 1). Mini-review: Anode modification for improved performance of microbial fuel cell. Renewable and Sustainable Energy Reviews. Elsevier Ltd.
  • Sun, M., Zhang, F., Tong, Z. H., Sheng, G. P., Chen, Y. Z., Zhao, Y., Chen, Y. P., Zhou, S. Y., Liu, G., Tian, Y. C., & Yu, H. Q. (2010). A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 26(2), 338–343.
  • Bahamonde Soria, R., Chinchin, B. D., Arboleda, D., Zhao, Y., Bonilla, P., Van der Bruggen, B., & Luis, P. (2022). Effect of the bio-inspired modification of low-cost membranes with TiO2:ZnO as microbial fuel cell membranes. Chemosphere, 291, 132840.
  • Ma, J., Zhang, J., Zhang, Y., Guo, Q., Hu, T., Xiao, H., Lu, W., Jia, J. (2023). Progress on anodic modification materials and future development directions in microbial fuel cells. Journal of Power Sources, 556 232486.
  • Savla, N., Anand, R., Pandit, S., & Prasad, R. (2020). Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance. Journal of Renewable Materials, 8(12), 1581–1605.
  • Sonawane, J. M., Yadav, A., Ghosh, P. C., & Adeloju, S. B. (2017). Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosensors and Bioelectronics, 90, 558–576.
  • Ci, S., Cai, P., Wen, Z., & Li, J. (2015). Graphene-based electrode materials for microbial fuel cells. Science China Materials, 58(6).
  • Wilberforce, T., Abdelkareem, M. A., Elsaid, K., Olabi, A. G., & Sayed, E. T. (2022). Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy, 240, 122478.
  • X. Xie, L. Hu, M. Pasta, G.F. Wells, D. Kong, C.S. Criddle, Y. Cui, Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells, Nano Letters. 11 (2011) 291–296.
  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427–4435.
  • Aghababaie, M., Farhadian, M., Jeihanipour, A., & Biria, D. (2015). Effective factors on the performance of microbial fuel cells in wastewater treatment – a review. Environmental Technology Reviews, 4(1), 71–89.
  • Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X., & Yu, C. (2011). A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 196(13), 5402–5407.
  • Guo, W., Cui, Y., Song, H., & Sun, J. (2014). Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess and Biosystems Engineering, 37(9), 1749–1758.
  • Kirubaharan, C.J., Kumar, G.G., Sha, C., Zhou, D., Yang, H., Nahm, K.S., Raj, B.S., Zhang, Y., Yong, Y.C. (2019). Facile fabrication of Au@polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells, Electrochimica Acta, 328, 135136.
  • Lyu, L., Seong, K. dong, Kim, J. M., Zhang, W., Jin, X., Kim, D. K., Jeon, Y., Kang, J., & Piao, Y. (2019). CNT/High Mass Loading MnO2/Graphene-Grafted Carbon Cloth Electrodes for High-Energy Asymmetric Supercapacitors. Nano-Micro Letters, 11(1), 1–12.
  • Xu, H., Quan, X., Xiao, Z., & Chen, L. (2018). Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chemical Engineering Journal, 335, 539–547.
  • Qiao, Y., Wu, X. S., & Li, C. M. (2014). Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells. Journal of Power Sources, 266, 226–231.
  • Yin, T., Lin, Z., Su, L., Yuan, C., & Fu, D. (2015). Preparation of vertically oriented TiO2 nanosheets modified carbon paper electrode and its enhancement to the performance of MFCs. ACS Applied Materials and Interfaces, 7(1), 400–408.
  • Zhang, C., Liang, P., Jiang, Y., & Huang, X. (2015). Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. Journal of Power Sources, 273, 580–583.
  • Tsai, H. Y., Wu, C. C., Lee, C. Y., & Shih, E. P. (2009). Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. Journal of Power Sources, 194(1), 199–205.
  • Dağdeviren, M. (2008). Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing, 4(19), 397–406.
  • Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The Promethee method. European Journal of Operational Research, 24(2), 228–238.
  • Morfoulaki, M., & Papathanasiou, J. (2021). Use of PROMETHEE MCDA Method for Ranking Alternative Measures of Sustainable Urban Mobility Planning. Mathematics, 9(6),602.
  • Mateo, S., Cañizares, P., Rodrigo, M. A., & Fernandez-Morales, F. J. (2018). Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. Applied Energy, 225, 52–59.
  • Fuel Cell Store, (y.y.). https://www.fuelcellstore.com/ (erişim 15 Mart 2023).
  • Liu, J. H., Zhang, S. L., Yu, M., An, J. W., & Li, S. M. (2013). Synthesis and Capacitance Characteristics of the Graphene Grafted Polypyrrole Composites. Journal of Inorganic Materials, 28(4), 408.
  • Liu, X. W., Chen, J. J., Huang, Y. X., Sun, X. F., Sheng, G. P., Li, D. B., Xiong, L., Zhang, Y. Y., Zhao, F., & Yu, H. Q. (2014). Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. Scientific Reports, 4.
  • Gude, G. G. (2018). Emerging Technologies for Sustainable Desalination Handbook -. Cambridge: ELSEVIER.
  • Merck | Life Science Products & Service Solutions. https://www.sigmaaldrich.com/TR/en (Erişim tarihi: 14 Mart 2023).
  • Y.C. Song, T.S. Choi, J.H. Woo, K. Yoo, J.W. Chung, C.Y. Lee, B.G. Kim, Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells, Journal of Applied Electrochemistry. 42 (2012) 391–398.
  • Nanografi Türkiye, (y.y.). https://shop.nanografi.com.tr/ (erişim 14 Mart 2023).
  • Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K., Chung, J. W., Lee, C. Y., & Kim, B. G. (2012). Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells. Journal of Applied Electrochemistry, 42(6), 391–398.
  • Nosek, D., Jachimowicz, P., & Cydzik-Kwiatkowska, A. (2020). Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. Energies, 13(24), 6596.
  • Muhammad, A., Shah, A. ul H. A., & Bilal, S. (2019). Comparative Study of the Adsorption of Acid Blue 40 on Polyaniline, Magnetic Oxide and Their Composites: Synthesis, Characterization and Application. Materials, 12(18), 2854.
  • Genç, T. (2013). PROMETHEE Yöntemi ve GAIA Düzlemi. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(1), 133–154.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Environmental Engineering (Other)
Journal Section Articles
Authors

Elif Durna Pişkin 0000-0003-4478-2967

Nevim Genç 0000-0002-6185-1090

Publication Date May 31, 2024
Submission Date March 20, 2023
Acceptance Date September 6, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Durna Pişkin, E., & Genç, N. (2024). Mikrobiyal Yakıt Hücrelerinde PROMETHEE Yaklaşımı ile Uygun Anot Elektrodu Modifikasyonunun Belirlenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 116-127. https://doi.org/10.35193/bseufbd.1267886