Research Article
BibTex RIS Cite

Multi-Band and Multi-Functional Metasurface Polarization Converter Improving Linear to Circular Polarization Conversion Band

Year 2024, Volume: 11 Issue: 1, 161 - 173, 31.05.2024
https://doi.org/10.35193/bseufbd.1327199

Abstract

In this study, a metasurface multifunctional reflective polarization converter consisting of two metal rings with two slots and a circular patch with an innermost slot is designed on an FR4 plate with a metal back surface. The behavior of the proposed polarizer between 2-12 GHz is investigated. 4.64 GHz is the lowest operating frequency of the proposed structure. An almost ideal narrow band linear to linear (LTL) polarization conversion is obtained at four regions such as 5.42-5.44 GHz, 7.28-7.34 GHz, 8.05-8.07 GHz and 11.57-11.59 GHz. An almost ideal polarization conversion from linear to circular (LTC) in two bands is obtained at 4.64-4.71 GHz and 8.7-10.43 GHz. Numerical simulations for this polarization converter are carried out with CST which is a widely used electromagnetic simulation program. In LTL bands, polarization conversion ratio (PCR)≈1 and ellipticity (e)≈0 required for a linear conversion are achieved. In LTC bands, PCR≈0.5 and e≈-1 required for a circular conversion are provided. A comparison between the proposed and some referenced polarization converters is performed.

References

  • Turkmen-Kucuksari, O. (2023). Multi-functional metamaterial polarization convertor in S/C/X bands. Optik, 282, 170865.
  • Zhu, L., Zhao, X., Miao, F. J., Ghosh, B. K., Dong, L., Tao, B. R., ... & Li, W. N. (2019). Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial. Optics express, 27(9), 12163-12170.
  • Lin, B. Q., Guo, J. X., Chu, P., Huo, W. J., Xing, Z., Huang, B. G., & Wu, L. (2018). Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface. Physical Review Applied, 9(2), 024038.
  • Cheng, Y., Nie, Y., Cheng, Z., & Gong, R. Z. (2014). Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial. Progress In Electromagnetics Research, 145, 263-272.
  • Xu, H. X., Wang, G. M., Qi, M. Q., Cai, T., & Cui, T. J. (2013). Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial. Optics express, 21(21), 24912-24921.
  • Zhao, Y., Qing, A., Meng, Y., Song, Z., & Lin, C. (2018). Dual-band circular polarizer based on simultaneous anisotropy and chirality in planar metamaterial. Scientific reports, 8(1), 1729.
  • Liu, X., Zhang, J., Li, W., Lu, R., Li, L., Xu, Z., & Zhang, A. (2016). Three-band polarization converter based on reflective metasurface. IEEE Antennas and Wireless Propagation Letters, 16, 924-927.
  • Gao, X., Yang, W. L., Ma, H. F., Cheng, Q., Yu, X. H., & Cui, T. J. (2018). A reconfigurable broadband polarization converter based on an active metasurface. IEEE Transactions on Antennas and Propagation, 66(11), 6086-6095.
  • Noishiki, T., Kuse, R., & Fukusako, T. (2020). Wideband metasurface polarization converter with double-square-shaped patch elements. Progress In Electromagnetics Research C, 105, 47-58.
  • Zeng, Q., Ren, W., Zhao, H., Xue, Z., & Li, W. (2019). Dual‐band transmission‐type circular polariser based on frequency selective surfaces. IET Microwaves, Antennas & Propagation, 13(2), 216-222.
  • Liao, K., Liu, S., Zheng, X., Zhang, X., Shao, X., Kong, X., & Hao, Z. (2022). A polarization converter with single‐band linear‐to‐linear and dual‐band linear‐to‐circular based on single‐layer reflective metasurface. International Journal of RF and Microwave Computer‐Aided Engineering, 32(2), e22955.
  • Ghosh, S., Bhattacharyya, S., Chaurasiya, D., & Srivastava, K. V. (2015). An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE antennas and wireless propagation letters, 14, 1172-1175.
  • Ahmed, F., Hassan, T., & Shoaib, N. (2020). Comments on “An ultrawideband ultrathin metamaterial absorber based on circular split rings”. IEEE Antennas and wireless propagation letters, 19(3), 512-514.
  • Hoa, N. T. Q., Tuan, T. S., Hieu, L. T., & Giang, B. L. (2021). Facile design of an ultra-thin broadband metamaterial absorber for C-band applications (Retraction of Vol 9, art no 468, 2019).
  • Pan, W., Yu, X., Zhang, J., & Zeng, W. (2016). A broadband terahertz metamaterial absorber based on two circular split rings. IEEE Journal of Quantum Electronics, 53(1), 1-6.
  • Tian, X. L., Kong, X. R., Liu, G. B., & Zhang, H. F. (2018). Comment on “A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings”. IEEE Journal of Quantum Electronics, 55(6), 1-3.
  • Xu, Z., Sheng, H., Wang, Q., Zhou, L., & Shen, Y. (2021). Terahertz broadband polarization converter based on the double-split ring resonator metasurface. SN Applied Sciences, 3, 1-7.
  • Öztürk, G., Tutar, F., & Bulut, M. (2022). Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü. Journal of the Institute of Science and Technology, 12(2), 680-691.
  • Wang, J., Qu, S., Xu, Z., Ma, H., Yang, Y., & Gu, C. (2008). A controllable magnetic metamaterial: split-ring resonator with rotated inner ring. IEEE Transactions on Antennas and Propagation, 56(7), 2018-2022.
  • Feng, J., Chen, X., Wu, L. S., & Mao, J. F. (2023). Broadband electrically tunable linear polarization converter based on a graphene metasurface. Optics Express, 31(2), 1420-1431.

Çok Bantlı ve Çok İşlevli Lineerden Dairesel Polarizasyona Dönüşüm Bandını İyileştiren Metayüzey Polarizasyon Dönüştürücü

Year 2024, Volume: 11 Issue: 1, 161 - 173, 31.05.2024
https://doi.org/10.35193/bseufbd.1327199

Abstract

Bu çalışmada, arka yüzeyi metal ile kaplı bir FR4 plaka üzerine iç içe yerleştirilmiş iki yarıklı iki metal halka ve en içe yerleştirilmiş bir yarıklı dairesel yamadan oluşan yansıtıcı çok işlevli bir metamalzeme polarizasyon dönüştürücü tasarlanmıştır. Önerilen polarizörün 2-12 GHz arasında davranışı incelenmiştir. 4.64 GHz önerilen yapının en düşük çalışma frekansıdır. Dört bölgede (5.42-5.44 GHz, 7.28-7.34 GHz, 8.05-8.07 GHz ve 11.57-11.59 GHz) dar bantlı doğrusaldan doğrusala (LTL) neredeyse ideal polarizasyon dönüşümü elde edilmiştir. İki bantta (4.64-4.71 GHz ve 8.7-10.43 GHz) ise doğrusaldan dairesele (LTC) neredeyse ideal polarizasyon dönüşümü elde edilmektedir. Bu polarizasyon dönüştürücü için sayısal benzetimler yaygın olarak kullanılan CST elektromanyetik simulasyon programı ile gerçekleştirilmiştir. LTL bantlarında doğrusal dönüşüm için gerekli olan polarizasyon dönüşüm oranı (PCR)≈1 ve eliptiklik değeri (e)≈0 sağlanmıştır. LTC bantlarında ise dairesel dönüşüm için gerekli olan PCR≈0.5 ve e≈-1 sağlanmıştır. Önerilen ve referans verilen bazı polarizasyon dönüştürücülerin karşılaştırılması yapılmıştır.

Supporting Institution

Yok

Thanks

Yok

References

  • Turkmen-Kucuksari, O. (2023). Multi-functional metamaterial polarization convertor in S/C/X bands. Optik, 282, 170865.
  • Zhu, L., Zhao, X., Miao, F. J., Ghosh, B. K., Dong, L., Tao, B. R., ... & Li, W. N. (2019). Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial. Optics express, 27(9), 12163-12170.
  • Lin, B. Q., Guo, J. X., Chu, P., Huo, W. J., Xing, Z., Huang, B. G., & Wu, L. (2018). Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface. Physical Review Applied, 9(2), 024038.
  • Cheng, Y., Nie, Y., Cheng, Z., & Gong, R. Z. (2014). Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial. Progress In Electromagnetics Research, 145, 263-272.
  • Xu, H. X., Wang, G. M., Qi, M. Q., Cai, T., & Cui, T. J. (2013). Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial. Optics express, 21(21), 24912-24921.
  • Zhao, Y., Qing, A., Meng, Y., Song, Z., & Lin, C. (2018). Dual-band circular polarizer based on simultaneous anisotropy and chirality in planar metamaterial. Scientific reports, 8(1), 1729.
  • Liu, X., Zhang, J., Li, W., Lu, R., Li, L., Xu, Z., & Zhang, A. (2016). Three-band polarization converter based on reflective metasurface. IEEE Antennas and Wireless Propagation Letters, 16, 924-927.
  • Gao, X., Yang, W. L., Ma, H. F., Cheng, Q., Yu, X. H., & Cui, T. J. (2018). A reconfigurable broadband polarization converter based on an active metasurface. IEEE Transactions on Antennas and Propagation, 66(11), 6086-6095.
  • Noishiki, T., Kuse, R., & Fukusako, T. (2020). Wideband metasurface polarization converter with double-square-shaped patch elements. Progress In Electromagnetics Research C, 105, 47-58.
  • Zeng, Q., Ren, W., Zhao, H., Xue, Z., & Li, W. (2019). Dual‐band transmission‐type circular polariser based on frequency selective surfaces. IET Microwaves, Antennas & Propagation, 13(2), 216-222.
  • Liao, K., Liu, S., Zheng, X., Zhang, X., Shao, X., Kong, X., & Hao, Z. (2022). A polarization converter with single‐band linear‐to‐linear and dual‐band linear‐to‐circular based on single‐layer reflective metasurface. International Journal of RF and Microwave Computer‐Aided Engineering, 32(2), e22955.
  • Ghosh, S., Bhattacharyya, S., Chaurasiya, D., & Srivastava, K. V. (2015). An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE antennas and wireless propagation letters, 14, 1172-1175.
  • Ahmed, F., Hassan, T., & Shoaib, N. (2020). Comments on “An ultrawideband ultrathin metamaterial absorber based on circular split rings”. IEEE Antennas and wireless propagation letters, 19(3), 512-514.
  • Hoa, N. T. Q., Tuan, T. S., Hieu, L. T., & Giang, B. L. (2021). Facile design of an ultra-thin broadband metamaterial absorber for C-band applications (Retraction of Vol 9, art no 468, 2019).
  • Pan, W., Yu, X., Zhang, J., & Zeng, W. (2016). A broadband terahertz metamaterial absorber based on two circular split rings. IEEE Journal of Quantum Electronics, 53(1), 1-6.
  • Tian, X. L., Kong, X. R., Liu, G. B., & Zhang, H. F. (2018). Comment on “A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings”. IEEE Journal of Quantum Electronics, 55(6), 1-3.
  • Xu, Z., Sheng, H., Wang, Q., Zhou, L., & Shen, Y. (2021). Terahertz broadband polarization converter based on the double-split ring resonator metasurface. SN Applied Sciences, 3, 1-7.
  • Öztürk, G., Tutar, F., & Bulut, M. (2022). Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü. Journal of the Institute of Science and Technology, 12(2), 680-691.
  • Wang, J., Qu, S., Xu, Z., Ma, H., Yang, Y., & Gu, C. (2008). A controllable magnetic metamaterial: split-ring resonator with rotated inner ring. IEEE Transactions on Antennas and Propagation, 56(7), 2018-2022.
  • Feng, J., Chen, X., Wu, L. S., & Mao, J. F. (2023). Broadband electrically tunable linear polarization converter based on a graphene metasurface. Optics Express, 31(2), 1420-1431.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics
Journal Section Articles
Authors

Öznur Türkmen Küçüksarı 0000-0003-2177-3793

Publication Date May 31, 2024
Submission Date July 13, 2023
Acceptance Date September 27, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Türkmen Küçüksarı, Ö. (2024). Çok Bantlı ve Çok İşlevli Lineerden Dairesel Polarizasyona Dönüşüm Bandını İyileştiren Metayüzey Polarizasyon Dönüştürücü. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 161-173. https://doi.org/10.35193/bseufbd.1327199