Research Article
BibTex RIS Cite

Metformin-induced and Mitochondrial Stress-mediated Apoptosis in Schizosaccharomyces pombe

Year 2024, Volume: 11 Issue: 1, 174 - 182, 31.05.2024
https://doi.org/10.35193/bseufbd.1329191

Abstract

Metformin, a widely used first-line medication in the treatment of type II diabetes, has been proposed to have a second indication in the treatment of cancers and aging. However, its accounting mechanisms in cellular physiology were not clearly understood. Therefore, its cytotoxicity and underlying physiological mechanisms should be explained. Schizosaccharomyces pombe was evaluated as a single-cell cytotoxicity model and was treated with metformin and grown on YEL media at 30 °C and 180 rpm. 0,1-20 mM metformin caused dose-dependent apoptosis and necrosis demonstrated by using Annexin V-FITC/PI and DAPI staining. Surprisingly, metformin reduced ROS levels with stable antioxidant enzyme levels, but the mitochondrial transmembrane potential was significantly increased indicating a differential regulation by the dual character of metformin. In addition, a possible role can be attributed to Cnx1 in apoptotic cell death; which showed a dramatic increase in transcription, however, three other potential apoptotic genes, Rad9, Pca1, and Aif1 were stable. To conclude, the dual effect of metformin was clarified, and related cellular physiological effects with accompanying mechanisms (particularly Cnx1-mediated) were shown using S. pombe.

Project Number

119Z186

References

  • Triggle, C. R., Mohammed, I., Bshesh, K., Marei, I., Ye, K., Ding, H., MacDonald, R., Hollenberg, M. D., and Hill, M. A. (2022). Metformin: Is it a drug for all reasons and diseases? Metabolism, 133, 155223
  • Podhorecka, M., Ibanez, B., and Dmoszyńska, A. (2017). Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online), 71, 170–175
  • Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., and Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest., 108, 1167–1174
  • Zhu, H., Jia, Z., Li, Y. R., and Danelisen, I. (2023). Molecular mechanisms of action of metformin: latest advances and therapeutic implications. Clin Exp Med., 10.1007/S10238-023-01051-Y
  • Amador, R. R., Longo, J. P. F., Lacava, Z. G., Dórea, J. G., and Santos, M. de F. M. A. (2012). Metformin (dimethyl-biguanide) induced DNA damage in mammalian cells. Genet Mol Biol., 35, 153
  • Di Matteo, S., Nevi, L., Overi, D., Landolina, N., Faccioli, J., Giulitti, F., Napoletano, C., Oddi, A., Marziani, A. M., Costantini, D., De Rose, A. M., Melandro, F., Bragazzi, M. C., Grazi, G. L., Berloco, P. B., Giuliante, F., Donato, G., Moretta, L., Carpino, G., Cardinale, V., Gaudio, E., and Alvaro, D. (2021). Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Scientific Reports, 11, 1–18
  • Erices, R., Bravo, M. L., Gonzalez, P., Oliva, B., Racordon, D., Garrido, M., Ibañez, C., Kato, S., Brañes, J., Pizarro, J., Barriga, M. I., Barra, A., Bravo, E., Alonso, C., Bustamente, E., Cuello, M. A., and Owen, G. I. (2013). Metformin, at Concentrations Corresponding to the Treatment of Diabetes, Potentiates the Cytotoxic Effects of Carboplatin in Cultures of Ovarian Cancer Cells. Reproductive Sciences, 20, 1433
  • Kadoda, K., Moriwaki, T., Tsuda, M., Sasanuma, H., Ishiai, M., Takata, M., Ide, H., Masunaga, S. I., Takeda, S., and Tano, K. (2017). Selective cytotoxicity of the anti-diabetic drug, metformin, in glucose-deprived chicken DT40 cells. PLoS One, 10.1371/JOURNAL.PONE.0185141
  • Sarıaydın, T., Çal, T., Aydın Dilsiz, S., Canpınar, H., and Ündeğer Bucungat, Ü. (2021). In vitro assessment of cytotoxic, apoptotic and genotoxic effects of metformin. İstanbul Journal of Pharmacy, 51, 167–174
  • Khodaei, F., Hosseini, S. M., Omidi, M., Hosseini, S. F., and Rezaei, M. (2021). Cytotoxicity of metformin against HT29 colon cancer cells contributes to mitochondrial Sirt3 upregulation. J Biochem Mol Toxicol., 35, e22662
  • Allende-Vega, N., Marco Brualla, J., Falvo, P., Alexia, C., Constantinides, M., de Maudave, A. F., Coenon, L., Gitenay, D., Mitola, G., Massa, P., Orecchioni, S., Bertolini, F., Marzo, I., Anel, A., and Villalba, M. (2022). Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). Scientific Reports, 12, 1–12
  • Park, J. H., Kim, Y. heon, Park, E. H., Lee, S. J., Kim, H., Kim, A., Lee, S. B., Shim, S., Jang, H., Myung, J. K., Park, S., Lee, S. J., and Kim, M. J. (2019). Effects of metformin and phenformin on apoptosis and epithelial-mesenchymal transition in chemoresistant rectal cancer. Cancer Sci., 110, 2834–2845
  • Zhang, H. H., and Guo, X. L. (2016). Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol., 78, 13–26
  • Mu, Q., Jiang, M., Zhang, Y., Wu, F., Li, H., Zhang, W., Wang, F., Liu, J., Li, L., Wang, D., Wang, W., Li, S., Song, H., and Tang, D. (2018). Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells. Onco Targets Ther., 11, 1767–1776
  • Herbert, C. J., Labarre-Mariotte, S., Cornu, D., Sophie, C., Panozzo, C., Michel, T., Dujardin, G., and Bonnefoy, N. (2021). Translational activators and mitoribosomal isoforms cooperate to mediate mRNA-specific translation in Schizosaccharomyces pombe mitochondria. Nucleic Acids Res., 49, 11145–11166
  • Emami, P., and Ueno, M. (2021). 3,3’-Diindolylmethane induces apoptosis and autophagy in fission yeast. PLoS One, 10.1371/JOURNAL.PONE.0255758
  • Chazotte, B. (2011). Labeling nuclear DNA using DAPI. Cold Spring Harb Protoc. 2011, pdb.prot5556
  • Madeo, F., Fröhlich, E., and Fröhlich, K. U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol., 139, 729–734
  • Azad, G. K., Singh, V., Mandal, P., Singh, P., Golla, U., Baranwal, S., Chauhan, S., and Tomar, R. S. (2014). Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio., 4, 77–89
  • Ağuş, H. H., Yılmaz, S., and Şengöz, C. O. (2019). Crosstalk between autophagy and apoptosis induced by camphor in Schizosaccharomyces pombe. Turkish Journal of Biology, 10.3906/biy-1908-11
  • Agus, H. H., Sarp, C., and Cemiloglu, M. (2018). Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in: Schizosaccharomyces pombe. Toxicol Res (Camb), 7, 848–858
  • Salucci, S., Burattini, S., Falcieri, E., and Gobbi, P. (2015). Three-dimensional apoptotic nuclear behavior analyzed by means of Field Emission in Lens Scanning Electron Microscope. Eur J Histochem., 59, 2539
  • MUTOH, N., KITAJIMA, S., and ICHIHARA, S. (2011). Apoptotic Cell Death in the Fission Yeast Schizosaccharomyces pombe Induced by Valproic Acid and Its Extreme Susceptibility to pH Change. Biosci Biotechnol Biochem., 75, 1113–1118
  • Barroso, G., Taylor, S., Morshedi, M., Manzur, F., Gaviño, F., and Oehninger, S. (2006). Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril., 85, 149–154
  • Baracca, A., Sgarbi, G., Solaini, G., and Lenaz, G. (2003). Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta., 1606, 137–146
  • Guérin, R., Arseneault, G., Dumont, S., and Rokeach, L. A. (2008). Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast. Mol Biol Cell., 19, 4404–20
  • Low, C. P., and Yang, H. (2008). Programmed cell death in fission yeast Schizosaccharomyces pombe. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research., 1783, 1335–1349
  • Lin, S.-J., and Austriaco, N. (2014). Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res., 14, 119–135
  • Emami, P., and Ueno, M. (2021). 3,3’-Diindolylmethane induces apoptosis and autophagy in fission yeast. PLoS One, 16, e0255758
  • Mallik, R., and Chowdhury, T. A. (2018). Metformin in cancer. Diabetes Res Clin Pract., 143, 409–419
  • Li, B., Zhou, P., Xu, K., Chen, T., Jiao, J., Wei, H., Yang, X., Xu, W., Wan, W., and Xiao, J. (2020). Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int J Biol Sci., 16, 74–84
  • Feng, Y., Ke, C., Tang, Q., Dong, H., Zheng, X., Lin, W., Ke, J., Huang, J., Yeung, S.-C., and Zhang, H. (2014). Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis., 5, e1088–e1088
  • Park, D. B. (2015). Metformin promotes apoptosis but suppresses autophagy in glucose-deprived H4IIE hepatocellular carcinoma cells. Diabetes Metab J., 39, 518–527
  • Agus, H. H., Kok, G., Derinoz, E., Oncel, D., and Yilmaz, S. (2020). Involvement of Pca1 in ROS-mediated apoptotic cell death induced by alpha-thujone in the fission yeast (Schizosaccharomyces pombe). FEMS Yeast Res., 20, foaa022
  • Ağuş, H. H., Çetin, A., and Yalçin, İ. N. (2021). Tetraconazole-induced Programmed Cell Death in Schizosaccharomyces pombe. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8, 833–843
  • Zhang, C., Lai, S.-H., Yang, H.-H., Xing, D.-G., Zeng, C.-C., Tang, B., Wan, D., and Liu, Y.-J. (2017). Photoinduced ROS regulation of apoptosis and mechanism studies of iridium( iii ) complex against SGC-7901 cells. RSC Adv., 7, 17752–17762
  • He, L. (2020). Metformin and Systemic Metabolism. Trends Pharmacol Sci., 41, 868
  • Diniz Vilela, D., Gomes Peixoto, L., Teixeira, R. R., Belele Baptista, N., Carvalho Caixeta, D., Vieira De Souza, A., Machado, H. L., Pereira, M. N., Sabino-Silva, R., and Espindola, F. S. (2016). The Role of Metformin in Controlling Oxidative Stress in Muscle of Diabetic Rats. Oxid Med Cell Longev., 10.1155/2016/6978625
  • Şeylan, C., and Tarhan, Ç. (2023). Metformin extends the chronological lifespan of fission yeast by altering energy metabolism and stress resistance capacity. FEMS Yeast Res., 23, 1–10
  • Wang, Y., An, H., Liu, T., Qin, C., Sesaki, H., Guo, S., Radovick, S., Hussain, M., Maheshwari, A., Wondisford, F. E., O’Rourke, B., and He, L. (2019). Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep. 29, 1511-1523.e5

Schizosaccharomyces pombe’de Metformin-tetiklemeli ve Mitokondriyal Stres Aracılı Apoptoz

Year 2024, Volume: 11 Issue: 1, 174 - 182, 31.05.2024
https://doi.org/10.35193/bseufbd.1329191

Abstract

Tip II diyabetin tedavisinde ilk müdahale olarak yaygın kullanılan metforminin kanser tedavisi ve yaşlanma için sekonder endikasyona sahip olduğu öne sürülmüştür. Ancak hücresel fizyolojik sorumlu mekanizmalar net olarak anlaşılmamıştır. Bu yüzden, sitotoksik ve fizyolojik mekanizmaların açıklığa kavuşturulması gerekmektedir. Schizosaccharomyces pombe tek hücreli sitotoksisite modeli olarak değerlendirilmiş, metforminle muamele edilerek 30 °C sıcaklık ve 180 rpm hızda, YEL medyumu içerisinde inkübasyona bırakılmıştır. Annexin V-FITC/PI ve DAPI boyaması ile gösterildiği üzere, 0,1-20 mM metformin doz-bağımlı apoptoz ve nekroza neden olmuştur. Öte yandan, metformin ROS seviyelerini düşürmüş, uygulamada antioksidan enzim seviyeleri sabit kalmış, fakat mitokondri membran potansiyeli önemli derecede yükselmiştir. Bu durum metforminin ikili karakteri ile diferansiyel regülasyona işaret etmektedir. Ek olarak, apoptotik hücre ölümünde Cnx1’e olası bir rol biçilebilir; ki transkripsiyonda dramatik bir yükseliş görülmüştür. Ancak diğer üç olası apoptoz geni Rad9, Pca1 ve Aif1 stabil kalmıştır. Sonuç olarak, bu çalışma ile metforminin ikili etkisi net olarak ortaya konmuş ve sorumlu mekanizmalarla birlikte (özellikle Cnx1-aracılı), ilişkili hücresel fizyolojik etkiler S. pombe maya hücresinde gösterilmiştir.

Supporting Institution

TÜBİTAK

Project Number

119Z186

Thanks

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) 1002 Program (119Z186). We especially thank B. PALABIYIK and E. YORUK for the chemicals and S. pombe strains.

References

  • Triggle, C. R., Mohammed, I., Bshesh, K., Marei, I., Ye, K., Ding, H., MacDonald, R., Hollenberg, M. D., and Hill, M. A. (2022). Metformin: Is it a drug for all reasons and diseases? Metabolism, 133, 155223
  • Podhorecka, M., Ibanez, B., and Dmoszyńska, A. (2017). Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online), 71, 170–175
  • Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., and Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest., 108, 1167–1174
  • Zhu, H., Jia, Z., Li, Y. R., and Danelisen, I. (2023). Molecular mechanisms of action of metformin: latest advances and therapeutic implications. Clin Exp Med., 10.1007/S10238-023-01051-Y
  • Amador, R. R., Longo, J. P. F., Lacava, Z. G., Dórea, J. G., and Santos, M. de F. M. A. (2012). Metformin (dimethyl-biguanide) induced DNA damage in mammalian cells. Genet Mol Biol., 35, 153
  • Di Matteo, S., Nevi, L., Overi, D., Landolina, N., Faccioli, J., Giulitti, F., Napoletano, C., Oddi, A., Marziani, A. M., Costantini, D., De Rose, A. M., Melandro, F., Bragazzi, M. C., Grazi, G. L., Berloco, P. B., Giuliante, F., Donato, G., Moretta, L., Carpino, G., Cardinale, V., Gaudio, E., and Alvaro, D. (2021). Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Scientific Reports, 11, 1–18
  • Erices, R., Bravo, M. L., Gonzalez, P., Oliva, B., Racordon, D., Garrido, M., Ibañez, C., Kato, S., Brañes, J., Pizarro, J., Barriga, M. I., Barra, A., Bravo, E., Alonso, C., Bustamente, E., Cuello, M. A., and Owen, G. I. (2013). Metformin, at Concentrations Corresponding to the Treatment of Diabetes, Potentiates the Cytotoxic Effects of Carboplatin in Cultures of Ovarian Cancer Cells. Reproductive Sciences, 20, 1433
  • Kadoda, K., Moriwaki, T., Tsuda, M., Sasanuma, H., Ishiai, M., Takata, M., Ide, H., Masunaga, S. I., Takeda, S., and Tano, K. (2017). Selective cytotoxicity of the anti-diabetic drug, metformin, in glucose-deprived chicken DT40 cells. PLoS One, 10.1371/JOURNAL.PONE.0185141
  • Sarıaydın, T., Çal, T., Aydın Dilsiz, S., Canpınar, H., and Ündeğer Bucungat, Ü. (2021). In vitro assessment of cytotoxic, apoptotic and genotoxic effects of metformin. İstanbul Journal of Pharmacy, 51, 167–174
  • Khodaei, F., Hosseini, S. M., Omidi, M., Hosseini, S. F., and Rezaei, M. (2021). Cytotoxicity of metformin against HT29 colon cancer cells contributes to mitochondrial Sirt3 upregulation. J Biochem Mol Toxicol., 35, e22662
  • Allende-Vega, N., Marco Brualla, J., Falvo, P., Alexia, C., Constantinides, M., de Maudave, A. F., Coenon, L., Gitenay, D., Mitola, G., Massa, P., Orecchioni, S., Bertolini, F., Marzo, I., Anel, A., and Villalba, M. (2022). Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). Scientific Reports, 12, 1–12
  • Park, J. H., Kim, Y. heon, Park, E. H., Lee, S. J., Kim, H., Kim, A., Lee, S. B., Shim, S., Jang, H., Myung, J. K., Park, S., Lee, S. J., and Kim, M. J. (2019). Effects of metformin and phenformin on apoptosis and epithelial-mesenchymal transition in chemoresistant rectal cancer. Cancer Sci., 110, 2834–2845
  • Zhang, H. H., and Guo, X. L. (2016). Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol., 78, 13–26
  • Mu, Q., Jiang, M., Zhang, Y., Wu, F., Li, H., Zhang, W., Wang, F., Liu, J., Li, L., Wang, D., Wang, W., Li, S., Song, H., and Tang, D. (2018). Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells. Onco Targets Ther., 11, 1767–1776
  • Herbert, C. J., Labarre-Mariotte, S., Cornu, D., Sophie, C., Panozzo, C., Michel, T., Dujardin, G., and Bonnefoy, N. (2021). Translational activators and mitoribosomal isoforms cooperate to mediate mRNA-specific translation in Schizosaccharomyces pombe mitochondria. Nucleic Acids Res., 49, 11145–11166
  • Emami, P., and Ueno, M. (2021). 3,3’-Diindolylmethane induces apoptosis and autophagy in fission yeast. PLoS One, 10.1371/JOURNAL.PONE.0255758
  • Chazotte, B. (2011). Labeling nuclear DNA using DAPI. Cold Spring Harb Protoc. 2011, pdb.prot5556
  • Madeo, F., Fröhlich, E., and Fröhlich, K. U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol., 139, 729–734
  • Azad, G. K., Singh, V., Mandal, P., Singh, P., Golla, U., Baranwal, S., Chauhan, S., and Tomar, R. S. (2014). Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio., 4, 77–89
  • Ağuş, H. H., Yılmaz, S., and Şengöz, C. O. (2019). Crosstalk between autophagy and apoptosis induced by camphor in Schizosaccharomyces pombe. Turkish Journal of Biology, 10.3906/biy-1908-11
  • Agus, H. H., Sarp, C., and Cemiloglu, M. (2018). Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in: Schizosaccharomyces pombe. Toxicol Res (Camb), 7, 848–858
  • Salucci, S., Burattini, S., Falcieri, E., and Gobbi, P. (2015). Three-dimensional apoptotic nuclear behavior analyzed by means of Field Emission in Lens Scanning Electron Microscope. Eur J Histochem., 59, 2539
  • MUTOH, N., KITAJIMA, S., and ICHIHARA, S. (2011). Apoptotic Cell Death in the Fission Yeast Schizosaccharomyces pombe Induced by Valproic Acid and Its Extreme Susceptibility to pH Change. Biosci Biotechnol Biochem., 75, 1113–1118
  • Barroso, G., Taylor, S., Morshedi, M., Manzur, F., Gaviño, F., and Oehninger, S. (2006). Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril., 85, 149–154
  • Baracca, A., Sgarbi, G., Solaini, G., and Lenaz, G. (2003). Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta., 1606, 137–146
  • Guérin, R., Arseneault, G., Dumont, S., and Rokeach, L. A. (2008). Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast. Mol Biol Cell., 19, 4404–20
  • Low, C. P., and Yang, H. (2008). Programmed cell death in fission yeast Schizosaccharomyces pombe. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research., 1783, 1335–1349
  • Lin, S.-J., and Austriaco, N. (2014). Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res., 14, 119–135
  • Emami, P., and Ueno, M. (2021). 3,3’-Diindolylmethane induces apoptosis and autophagy in fission yeast. PLoS One, 16, e0255758
  • Mallik, R., and Chowdhury, T. A. (2018). Metformin in cancer. Diabetes Res Clin Pract., 143, 409–419
  • Li, B., Zhou, P., Xu, K., Chen, T., Jiao, J., Wei, H., Yang, X., Xu, W., Wan, W., and Xiao, J. (2020). Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int J Biol Sci., 16, 74–84
  • Feng, Y., Ke, C., Tang, Q., Dong, H., Zheng, X., Lin, W., Ke, J., Huang, J., Yeung, S.-C., and Zhang, H. (2014). Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis., 5, e1088–e1088
  • Park, D. B. (2015). Metformin promotes apoptosis but suppresses autophagy in glucose-deprived H4IIE hepatocellular carcinoma cells. Diabetes Metab J., 39, 518–527
  • Agus, H. H., Kok, G., Derinoz, E., Oncel, D., and Yilmaz, S. (2020). Involvement of Pca1 in ROS-mediated apoptotic cell death induced by alpha-thujone in the fission yeast (Schizosaccharomyces pombe). FEMS Yeast Res., 20, foaa022
  • Ağuş, H. H., Çetin, A., and Yalçin, İ. N. (2021). Tetraconazole-induced Programmed Cell Death in Schizosaccharomyces pombe. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8, 833–843
  • Zhang, C., Lai, S.-H., Yang, H.-H., Xing, D.-G., Zeng, C.-C., Tang, B., Wan, D., and Liu, Y.-J. (2017). Photoinduced ROS regulation of apoptosis and mechanism studies of iridium( iii ) complex against SGC-7901 cells. RSC Adv., 7, 17752–17762
  • He, L. (2020). Metformin and Systemic Metabolism. Trends Pharmacol Sci., 41, 868
  • Diniz Vilela, D., Gomes Peixoto, L., Teixeira, R. R., Belele Baptista, N., Carvalho Caixeta, D., Vieira De Souza, A., Machado, H. L., Pereira, M. N., Sabino-Silva, R., and Espindola, F. S. (2016). The Role of Metformin in Controlling Oxidative Stress in Muscle of Diabetic Rats. Oxid Med Cell Longev., 10.1155/2016/6978625
  • Şeylan, C., and Tarhan, Ç. (2023). Metformin extends the chronological lifespan of fission yeast by altering energy metabolism and stress resistance capacity. FEMS Yeast Res., 23, 1–10
  • Wang, Y., An, H., Liu, T., Qin, C., Sesaki, H., Guo, S., Radovick, S., Hussain, M., Maheshwari, A., Wondisford, F. E., O’Rourke, B., and He, L. (2019). Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep. 29, 1511-1523.e5
There are 40 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Hızlan Hıncal Ağuş 0000-0002-0252-9501

Cenk Kığ 0000-0002-6318-5001

Mustafa Kaçmaz 0000-0002-1955-0198

Project Number 119Z186
Publication Date May 31, 2024
Submission Date July 18, 2023
Acceptance Date July 31, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Ağuş, H. H., Kığ, C., & Kaçmaz, M. (2024). Metformin-induced and Mitochondrial Stress-mediated Apoptosis in Schizosaccharomyces pombe. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 174-182. https://doi.org/10.35193/bseufbd.1329191