Environmental Sustainability Applications of Wood Plastic Composite Materials: Life Cycle Assessment
Year 2024,
Volume: 11 Issue: 2, 437 - 450, 29.11.2024
Gözde Çolak Bayram
,
Burçin Atılgan Türkmen
,
Gamzenur Özsin
Abstract
Wood-plastic composite (WPC) materials have been developed as a versatile and sustainable solution for industries looking for environmentally friendly alternatives. Life cycle assessment (LCA), which is applied to analyze the environmental impact of functional materials, has become the focus of many scientific studies as the concept of sustainability is becoming increasingly important. However, while there are studies that summarize environmental sustainability and LCA research specific to different material groups in an integrated manner, there is no compilation study specific to WPC in the literature. In this context, the LCA studies prepared for WPCs have been comprehensively reviewed and the current literature findings on this subject have been compiled for the first time. For this purpose, firstly, the basics of LCA are explained and then the results of composites obtained from different lignocellulosic biomass samples and polymer composites are evaluated in various environmental impact categories. Thus, the parameters that can influence the environmental sustainability of WPC materials are discussed. As a result, more sustainable materials and methods have been identified in the production processes of WPCs that can be used as an alternative to traditional materials. Furthermore, the necessity of more widespread application of LCA for different material compositions is emphasized. As supported by the current literature, it is concluded that these materials are more environmentally friendly than similar materials with the same function, and the article is concluded with suggestions for WPC materials for a more sustainable approach.
Project Number
01.BŞEÜ.03-07
References
- United Nations. (1987). The Brundtland Commission, Our Common Future, The Report of the World Commission on Environment and Development Oxford University Press, Oxford.
- Harris, J. M. (2003). Sustainability and sustainable development. International Society for Ecological Economics, 1(1), 1-12.
- Azapagic, A. and Perdan, S. (2000). Indicators of Sustainable Development for Industry: A General Framework. Process Safety and Environmental Protection, 78 (4), 243-261.
- Tufan, M. Z. and Cengiz, Ö. (2012). Sürdürülebilirlik kavrami ve yapi malzemeleri için sürdürülebilirlik kriterleri. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 2(1), 6-13.
- Ding, G. K. C. (2014). 3 - Life cycle assessment (LCA) of sustainable building materials: An overview. Woodhead Publishing, 38-62.
- Titirici, M., Baird, S. G., et al. (2022). The sustainable materials roadmap. Journal of Physics: Materials, 5(3), 032001.
- Goldhahn, C., Cabane, E., et al. (2021). Sustainability in wood materials science: An opinion about current material development techniques and the end of lifetime perspectives. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 379, 20200339.
- Özsin, G., Çolak, G., et al. (2024). Sürdürülebilir Ahşap Plastik Kompozit Malzemeler: Hammaddeler, Yapısal Özellikler, Üretim Süreçleri ve Güncel Eğilimler. Gazi Mühendislik Bilimleri Dergisi, 10(2), 264-280.
- Woodard, A. C. and Milner, H. R. (2016). 7 - Sustainability of timber and wood in construction. Woodhead Publishing, 129-157.
- Andrady, A. L. and Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984.
- Biçergil, G. and Atılgan Türkmen, B. (2023). Evaluation of environmental impacts in PVC sector: the case of Turkey. Plastics, Rubber and Composites, 52(4), 238-247.
- Örücü, E. and Atılgan Türkmen, B. (2022). Evaluating the sustainability of car mat manufacturing. Sustainable Materials and Technologies, 32, e00402.
- Isola, C., Sieverding, H. L., et al. (2017). Life cycle assessment of photodegradable polymeric material derived from renewable bioresources. Journal of Cleaner Production, 142, 2935-2944.
- Alsabri, A. and Al-Ghamdi, S. G. (2020). Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance. Energy Reports, 6, 364-370.
- Das, S., Liang, C., et al. (2021). Life Cycle Assessment of Polymers and Their Recycling. American Chemical Society, Vol. 1391, 143-170.
- Boone, L., Préat, N., et al. (2023). Environmental performance of plastic food packaging: Life cycle assessment extended with costs on marine ecosystem services. Science of The Total Environment, 894, 164781.
- Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites – A review. Waste Management, 33(9), 1898-1905.
- Vidal, R., Martínez, P., et al. (2009). Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. The International Journal of Life Cycle Assessment, 14(1), 73-82.
- Bergman, R., Oneil, E., et al. (2013). Comparative life-cycle assessment of California redwood decking, Corrim, 1-9.
- Das, O., Babu, K., et al. (2022). Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews, 158, 112054.
- Al Faruque, M. A., Salauddin, M., et al. (2022). Bast Fiber Reinforced Green Polymer Composites: A Review on Their Classification, Properties, and Applications. Journal of Natural Fibers, 19(14), 8006-8021.
- Sun, W., Sun, Y., et al. (2023). Research on Biomass Waste Utilization Based on Pollution Reduction and Carbon Sequestration, 15(5), 4535.
- Hill, C., Norton, A., et al. (2015). 12 - Environmental impacts of wood composites and legislative obligations. Woodhead Publishing, 311-333.
- Schwarzkopf, M. J. and Burnard, M. D. (2016). Wood-Plastic Composites—Performance and Environmental Impacts. Springer Singapore, 19–43.
- Rabbat, C., Awad, S., et al. (2022). Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials. Renewable and Sustainable Energy Reviews, 156, 111962.
- Pokhrel, G., Kizha, A. R., et al. (2021). Transportation Cost Analysis on Alternative Wood Feedstocks for Manufacturing Wood-Plastic Composites. Bioresources, 17, 634-651.
- Braghiroli, F. L. and Passarini, L. (2020). Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities. Current Forestry Reports, 6(2), 172-183.
- Xiao, R., Yu, Q., et al. (2023). Visual design of high-density polyethylene into wood plastic composite with multiple desirable features: A promising strategy for plastic waste valorization. Journal of Building Engineering, 63, 105445.
- Huang, Y., Lu, L., et al. (2022). Eco-friendly wood-plastic composites from laminate sanding dust and waste poly(propylene) food pails. Waste Management, 149, 96-104.
- Khalid, M. Y., Arif, Z. U., et al. (2022). Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies, 31, e00382.
- Ge, S., Ouyang, H., et al. (2023). High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Advanced Composites and Hybrid Materials, 6(1), 44.
- Ramesh, M., Rajeshkumar, L., et al. (2022). A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects, 14(3), 589.
- Nukala, S. G., Kong, I., et al. (2022). Preparation and Characterisation of Wood Polymer Composites Using Sustainable Raw Materials, 14(15), 3183.
- Brusseau, M. L. (2019). Chapter 32 - Sustainable Development and Other Solutions to Pollution and Global Change. Academic Press, 585-603.
- Finnveden, G. and Potting, J. (2014). Life Cycle Assessment. Academic Press, 74-77.
- Jacquemin, L., Pontalier, P.-Y., et al. (2012). Life cycle assessment (LCA) applied to the process industry: a review. The International Journal of Life Cycle Assessment, 17(8), 1028-1041.
- ISO. (2006). Life Cycle Assessment - Requirements and Guidelines. International Standard Organization, Geneva, Switzerland.
- ISO. (2006). Life Cycle Assessment - Principles and Framework. International Standard Organization, Geneva, Switzerland.
- Baumann, H. and Tillman, A. M. (2004). The Hitch Hiker's Guide to LCA: An orientation in life cycle assessment methodology and application. Studentlitteratur.
- Demirer, G. N. (2011). Sürdürülebilir Üretim ve Tüketim Yayınları - I, Yaşam Döngüsü Analizi, Pratik Yaşam Döngüsü Analizi Klavuzu AB Sürecinde İşletmeler ve Kamu için Yaşam Döngüsü Analizi Yöntem ve Örnekleri.
- Azapagic, A. (1999). Life cycle assessment and its application to process selection, design and optimisation. Chemical Engineering Journal, 73(1), 1-21.
- Germirli Babuna, F., Baş, B. , Atılgan Türkmen, B. & Elginöz Kanat, N. (). . (2023). Türk Endüstrisi için Temiz Üretim ve Yaşam Döngüsü Değerlendirmesi Örnekleri . Çevre İklim ve Sürdürülebilirlik, 24(2) , 55-64.
- Orucu, E. and Atilgan Turkmen, B. (2022). Evaluating the sustainability of car mat manufacturing. Sustainable Materials and Technologies, 32, e00402.
- Rajendran, S. (2020). Applications of Recycled Plastics and Life Cycle Assessment. University of Sheffield, Sheffield.
- Curran, M. A. (2013). Life Cycle Assessment: a review of the methodology and its application to sustainability. Current Opinion in Chemical Engineering, 2(3), 273-277.
- Azapagic, A. (2004). Life Cycle Thinking and Life Cycle Assessment (LCA). In Sustainable Development in Practice: Case Studies for Engineers and Scientists. John Wiley & Sons Ltd., 426-437.
- Lee, K.-M. and Inaba, A. (2004). Life Cycle Assessment, Best Practices of ISO 14040 Series, Committee on Trade and Investment, Asia-Pacific Economic Cooperation, Ministry of Commerce, Industry and Energy Republic of Korea.
- EU. (2010). International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance.European Commission - Joint Research Centre - Institute for Environment and Sustainability: First edition Luxembourg.
- Baumann, H. and Tillman, A.-M. (2004). The Hitch Hiker's Guide to LCA : An Orientation in Life Cycle Assessment Methodology and Application. Studentlitteratur AB, Lund, Sweden, 19-69.
- Bruijn, H., Duin, R., et al. (2002). Handbook on Life Cycle Assessment, Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht.
- Guinée, J. B. (2002). Handbook on life cycle assessment: operational guide to the ISO standards. Springer Science & Business Media.
- Rebitzer, G., Ekvall, T., et al. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720.
- Azapagic, A. (2010). Measuring Sustainable Development: An Overview. In Sustainable Development in Practice: Case Studies for Engineers and Scientists. John Wiley & Sons Ltd., 26-55.
- Operato, L., Vitiello, L., et al. (2023). Life cycle assessment of poly(lactic acid)-based green composites filled with pine needles or kenaf fibers. Journal of Cleaner Production, 387, 135901.
- Haylock, R. and Rosentrater, K. A. (2018). Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. Journal of Polymers and the Environment, 26(4), 1484-1503.
- Feifel, S., Stübs, O., et al. (2015). Comparing wood–polymer composites with solid wood: the case of sustainability of terrace flooring. European Journal of Wood and Wood Products, 73(6), 829-836.
- Bolin, C. A. and Smith, S. (2011). Life cycle assessment of ACQ-treated lumber with comparison to wood plastic composite decking. Journal of Cleaner Production, 19(6), 620-629.
- Khan, M. M. H., Deviatkin, I., et al. (2021). Environmental impacts of wooden, plastic, and wood-polymer composite pallet: a life cycle assessment approach. The International Journal of Life Cycle Assessment, 26(8), 1607-1622.
- Hossain, M. U. and Poon, C. S. (2018). Comparative LCA of wood waste management strategies generated from building construction activities. Journal of Cleaner Production, 177, 387-397.
- Liikanen, M., Grönman, K., et al. (2019). Construction and demolition waste as a raw material for wood polymer composites – Assessment of environmental impacts. Journal of Cleaner Production, 225, 716-727.
- Xu, X., Jayaraman, K., et al. (2008). Life cycle assessment of wood-fibre-reinforced polypropylene composites. Journal of Materials Processing Technology, 198(1), 168-177.
- Sommerhuber, P. F., Wenker, J. L., et al. (2017). Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resources, Conservation and Recycling, 117, 235-248.
- Väntsi, O. and Kärki, T. (2015). Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites. Resources, Conservation and Recycling, 104, 38-48.
- Qiang, T., Yu, D., et al. (2014). Life cycle assessment on polylactide-based wood plastic composites toughened with polyhydroxyalkanoates. Journal of Cleaner Production, 66, 139-145.
- Pokhrel, G., Gu, H., et al. (2021). Life Cycle Assessment (LCA) of Wood Flour and Pellets for Manufacturing Wood-Plastic Composites (WPCs). Recent Progress in Materials, 4(1), 1-1.
- [66] Qiang, T., Chou, Y., et al. (2019). Environmental Impacts of Styrene-Butadiene-Styrene Toughened Wood Fiber/Polylactide Composites: A Cradle-to-Gate Life Cycle Assessment, 16(18), 3402.
Ahşap Plastik Kompozit Malzemelerin Çevresel Sürdürülebilirlik Uygulamaları: Yaşam Döngüsü Değerlendirmesi
Year 2024,
Volume: 11 Issue: 2, 437 - 450, 29.11.2024
Gözde Çolak Bayram
,
Burçin Atılgan Türkmen
,
Gamzenur Özsin
Abstract
Ahşap-plastik kompozit (APK) malzemeler, çevre dostu alternatifler arayan endüstriler için çok yönlü ve sürdürülebilir bir çözüm sunan malzemeler olarak geliştirilmiştir. Fonksiyonel malzemelerin çevreye olan etkilerini analiz etmek amacıyla uygulanan yaşam döngüsü değerlendirmesi (YDD) ise, sürdürülebilirlik kavramının gitgide önem kazandığı günümüzde birçok bilimsel çalışmanın odak noktası haline gelmiştir. Ancak, farklı malzeme gruplarına özgü çevresel sürdürülebilirlik ve yaşam döngüsü değerlendirmesi araştırmalarını bütünleşik bir biçimde özetleyen çalışmalar bulunmakla birlikte, APK özelinde bir derleme çalışmasına literatürde rastlanmamaktadır. Bu kapsamda, APK için hazırlanan YDD çalışmaları kapsamlı bir şekilde incelenmiş ve bu konudaki güncel literatür bulguları ilk kez derlenmiştir. Bu amaçla, öncelikle YDD’nin temelleri açıklanmış; ardından farklı lignoselülozik biyokütle örnekleri ve polimer birleşimlerinden elde edilen kompozitlerin çeşitli çevresel etki kategorilerindeki sonuçları değerlendirilmiştir. Böylece, APK malzemelerin çevresel sürdürülebilirliğine etki edebilecek parametreler tartışılmıştır. Sonuç olarak, geleneksel malzemelere alternatif olarak kullanılabilecek APK'lerin üretim süreçlerinde daha sürdürülebilir malzeme ve yöntemler belirlenmiştir. Ayrıca, farklı malzeme kompozisyonları için YDD’nin daha yaygın bir şekilde uygulanmasının gerekliliği vurgulanmıştır. Güncel literatür verilerinin de desteklediği üzere, bu malzemelerin aynı işleve sahip benzer malzemelere göre daha çevre dostu olduğu sonucuna varılmış; daha sürdürülebilir bir yaklaşım için APK malzemelere yönelik önerilerle makale sonlandırılmıştır.
Supporting Institution
Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Project Number
01.BŞEÜ.03-07
Thanks
Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne 2022-01.BŞEÜ.03-07 numaralı ve “Ahşap-Plastik Kompozitlerin Endüstriyel Üretim Sürecine İlişkin Yaşam Döngüsü Çevresel Sürdürülebilirlik Analizi” başlıklı proje desteğinden dolayı teşekkür ederiz. Sunulan çalışmanın 1. kısmı “Ahşap Plastik Kompozit Malzemelerin Çevresel Sürdürülebilirlik Uygulamaları: I. Ahşap Plastik Kompozitlerin Yapısal Özellikleri ve Üretimi” başlığı ile yayınlanacaktır ve her iki makalede yayımlanan bilgi ve veriler Bilecik Şeyh Edebali Üniversitesi Lisansüstü Eğitim Enstitüsü’nde Gözde Çolak tarafından yürütülen yüksek lisans çalışmalarını içermektedir.
References
- United Nations. (1987). The Brundtland Commission, Our Common Future, The Report of the World Commission on Environment and Development Oxford University Press, Oxford.
- Harris, J. M. (2003). Sustainability and sustainable development. International Society for Ecological Economics, 1(1), 1-12.
- Azapagic, A. and Perdan, S. (2000). Indicators of Sustainable Development for Industry: A General Framework. Process Safety and Environmental Protection, 78 (4), 243-261.
- Tufan, M. Z. and Cengiz, Ö. (2012). Sürdürülebilirlik kavrami ve yapi malzemeleri için sürdürülebilirlik kriterleri. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 2(1), 6-13.
- Ding, G. K. C. (2014). 3 - Life cycle assessment (LCA) of sustainable building materials: An overview. Woodhead Publishing, 38-62.
- Titirici, M., Baird, S. G., et al. (2022). The sustainable materials roadmap. Journal of Physics: Materials, 5(3), 032001.
- Goldhahn, C., Cabane, E., et al. (2021). Sustainability in wood materials science: An opinion about current material development techniques and the end of lifetime perspectives. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 379, 20200339.
- Özsin, G., Çolak, G., et al. (2024). Sürdürülebilir Ahşap Plastik Kompozit Malzemeler: Hammaddeler, Yapısal Özellikler, Üretim Süreçleri ve Güncel Eğilimler. Gazi Mühendislik Bilimleri Dergisi, 10(2), 264-280.
- Woodard, A. C. and Milner, H. R. (2016). 7 - Sustainability of timber and wood in construction. Woodhead Publishing, 129-157.
- Andrady, A. L. and Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984.
- Biçergil, G. and Atılgan Türkmen, B. (2023). Evaluation of environmental impacts in PVC sector: the case of Turkey. Plastics, Rubber and Composites, 52(4), 238-247.
- Örücü, E. and Atılgan Türkmen, B. (2022). Evaluating the sustainability of car mat manufacturing. Sustainable Materials and Technologies, 32, e00402.
- Isola, C., Sieverding, H. L., et al. (2017). Life cycle assessment of photodegradable polymeric material derived from renewable bioresources. Journal of Cleaner Production, 142, 2935-2944.
- Alsabri, A. and Al-Ghamdi, S. G. (2020). Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance. Energy Reports, 6, 364-370.
- Das, S., Liang, C., et al. (2021). Life Cycle Assessment of Polymers and Their Recycling. American Chemical Society, Vol. 1391, 143-170.
- Boone, L., Préat, N., et al. (2023). Environmental performance of plastic food packaging: Life cycle assessment extended with costs on marine ecosystem services. Science of The Total Environment, 894, 164781.
- Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites – A review. Waste Management, 33(9), 1898-1905.
- Vidal, R., Martínez, P., et al. (2009). Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. The International Journal of Life Cycle Assessment, 14(1), 73-82.
- Bergman, R., Oneil, E., et al. (2013). Comparative life-cycle assessment of California redwood decking, Corrim, 1-9.
- Das, O., Babu, K., et al. (2022). Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews, 158, 112054.
- Al Faruque, M. A., Salauddin, M., et al. (2022). Bast Fiber Reinforced Green Polymer Composites: A Review on Their Classification, Properties, and Applications. Journal of Natural Fibers, 19(14), 8006-8021.
- Sun, W., Sun, Y., et al. (2023). Research on Biomass Waste Utilization Based on Pollution Reduction and Carbon Sequestration, 15(5), 4535.
- Hill, C., Norton, A., et al. (2015). 12 - Environmental impacts of wood composites and legislative obligations. Woodhead Publishing, 311-333.
- Schwarzkopf, M. J. and Burnard, M. D. (2016). Wood-Plastic Composites—Performance and Environmental Impacts. Springer Singapore, 19–43.
- Rabbat, C., Awad, S., et al. (2022). Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials. Renewable and Sustainable Energy Reviews, 156, 111962.
- Pokhrel, G., Kizha, A. R., et al. (2021). Transportation Cost Analysis on Alternative Wood Feedstocks for Manufacturing Wood-Plastic Composites. Bioresources, 17, 634-651.
- Braghiroli, F. L. and Passarini, L. (2020). Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities. Current Forestry Reports, 6(2), 172-183.
- Xiao, R., Yu, Q., et al. (2023). Visual design of high-density polyethylene into wood plastic composite with multiple desirable features: A promising strategy for plastic waste valorization. Journal of Building Engineering, 63, 105445.
- Huang, Y., Lu, L., et al. (2022). Eco-friendly wood-plastic composites from laminate sanding dust and waste poly(propylene) food pails. Waste Management, 149, 96-104.
- Khalid, M. Y., Arif, Z. U., et al. (2022). Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies, 31, e00382.
- Ge, S., Ouyang, H., et al. (2023). High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Advanced Composites and Hybrid Materials, 6(1), 44.
- Ramesh, M., Rajeshkumar, L., et al. (2022). A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects, 14(3), 589.
- Nukala, S. G., Kong, I., et al. (2022). Preparation and Characterisation of Wood Polymer Composites Using Sustainable Raw Materials, 14(15), 3183.
- Brusseau, M. L. (2019). Chapter 32 - Sustainable Development and Other Solutions to Pollution and Global Change. Academic Press, 585-603.
- Finnveden, G. and Potting, J. (2014). Life Cycle Assessment. Academic Press, 74-77.
- Jacquemin, L., Pontalier, P.-Y., et al. (2012). Life cycle assessment (LCA) applied to the process industry: a review. The International Journal of Life Cycle Assessment, 17(8), 1028-1041.
- ISO. (2006). Life Cycle Assessment - Requirements and Guidelines. International Standard Organization, Geneva, Switzerland.
- ISO. (2006). Life Cycle Assessment - Principles and Framework. International Standard Organization, Geneva, Switzerland.
- Baumann, H. and Tillman, A. M. (2004). The Hitch Hiker's Guide to LCA: An orientation in life cycle assessment methodology and application. Studentlitteratur.
- Demirer, G. N. (2011). Sürdürülebilir Üretim ve Tüketim Yayınları - I, Yaşam Döngüsü Analizi, Pratik Yaşam Döngüsü Analizi Klavuzu AB Sürecinde İşletmeler ve Kamu için Yaşam Döngüsü Analizi Yöntem ve Örnekleri.
- Azapagic, A. (1999). Life cycle assessment and its application to process selection, design and optimisation. Chemical Engineering Journal, 73(1), 1-21.
- Germirli Babuna, F., Baş, B. , Atılgan Türkmen, B. & Elginöz Kanat, N. (). . (2023). Türk Endüstrisi için Temiz Üretim ve Yaşam Döngüsü Değerlendirmesi Örnekleri . Çevre İklim ve Sürdürülebilirlik, 24(2) , 55-64.
- Orucu, E. and Atilgan Turkmen, B. (2022). Evaluating the sustainability of car mat manufacturing. Sustainable Materials and Technologies, 32, e00402.
- Rajendran, S. (2020). Applications of Recycled Plastics and Life Cycle Assessment. University of Sheffield, Sheffield.
- Curran, M. A. (2013). Life Cycle Assessment: a review of the methodology and its application to sustainability. Current Opinion in Chemical Engineering, 2(3), 273-277.
- Azapagic, A. (2004). Life Cycle Thinking and Life Cycle Assessment (LCA). In Sustainable Development in Practice: Case Studies for Engineers and Scientists. John Wiley & Sons Ltd., 426-437.
- Lee, K.-M. and Inaba, A. (2004). Life Cycle Assessment, Best Practices of ISO 14040 Series, Committee on Trade and Investment, Asia-Pacific Economic Cooperation, Ministry of Commerce, Industry and Energy Republic of Korea.
- EU. (2010). International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance.European Commission - Joint Research Centre - Institute for Environment and Sustainability: First edition Luxembourg.
- Baumann, H. and Tillman, A.-M. (2004). The Hitch Hiker's Guide to LCA : An Orientation in Life Cycle Assessment Methodology and Application. Studentlitteratur AB, Lund, Sweden, 19-69.
- Bruijn, H., Duin, R., et al. (2002). Handbook on Life Cycle Assessment, Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht.
- Guinée, J. B. (2002). Handbook on life cycle assessment: operational guide to the ISO standards. Springer Science & Business Media.
- Rebitzer, G., Ekvall, T., et al. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720.
- Azapagic, A. (2010). Measuring Sustainable Development: An Overview. In Sustainable Development in Practice: Case Studies for Engineers and Scientists. John Wiley & Sons Ltd., 26-55.
- Operato, L., Vitiello, L., et al. (2023). Life cycle assessment of poly(lactic acid)-based green composites filled with pine needles or kenaf fibers. Journal of Cleaner Production, 387, 135901.
- Haylock, R. and Rosentrater, K. A. (2018). Cradle-to-Grave Life Cycle Assessment and Techno-Economic Analysis of Polylactic Acid Composites with Traditional and Bio-Based Fillers. Journal of Polymers and the Environment, 26(4), 1484-1503.
- Feifel, S., Stübs, O., et al. (2015). Comparing wood–polymer composites with solid wood: the case of sustainability of terrace flooring. European Journal of Wood and Wood Products, 73(6), 829-836.
- Bolin, C. A. and Smith, S. (2011). Life cycle assessment of ACQ-treated lumber with comparison to wood plastic composite decking. Journal of Cleaner Production, 19(6), 620-629.
- Khan, M. M. H., Deviatkin, I., et al. (2021). Environmental impacts of wooden, plastic, and wood-polymer composite pallet: a life cycle assessment approach. The International Journal of Life Cycle Assessment, 26(8), 1607-1622.
- Hossain, M. U. and Poon, C. S. (2018). Comparative LCA of wood waste management strategies generated from building construction activities. Journal of Cleaner Production, 177, 387-397.
- Liikanen, M., Grönman, K., et al. (2019). Construction and demolition waste as a raw material for wood polymer composites – Assessment of environmental impacts. Journal of Cleaner Production, 225, 716-727.
- Xu, X., Jayaraman, K., et al. (2008). Life cycle assessment of wood-fibre-reinforced polypropylene composites. Journal of Materials Processing Technology, 198(1), 168-177.
- Sommerhuber, P. F., Wenker, J. L., et al. (2017). Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resources, Conservation and Recycling, 117, 235-248.
- Väntsi, O. and Kärki, T. (2015). Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites. Resources, Conservation and Recycling, 104, 38-48.
- Qiang, T., Yu, D., et al. (2014). Life cycle assessment on polylactide-based wood plastic composites toughened with polyhydroxyalkanoates. Journal of Cleaner Production, 66, 139-145.
- Pokhrel, G., Gu, H., et al. (2021). Life Cycle Assessment (LCA) of Wood Flour and Pellets for Manufacturing Wood-Plastic Composites (WPCs). Recent Progress in Materials, 4(1), 1-1.
- [66] Qiang, T., Chou, Y., et al. (2019). Environmental Impacts of Styrene-Butadiene-Styrene Toughened Wood Fiber/Polylactide Composites: A Cradle-to-Gate Life Cycle Assessment, 16(18), 3402.