Research Article
BibTex RIS Cite

Densification and Characterization of Al2O3/Glass/ZrO2 Ceramics for Microwave Applications

Year 2024, Volume: 11 Issue: 2, 335 - 342, 29.11.2024
https://doi.org/10.35193/bseufbd.1364294

Abstract

A commercial SiO2-Al2O3-CaO based commercial glass, Al2O3, and ZrO2 were used as initial materials. ZrO2 was added to the C55 powder (45 wt% Al2O3+ 55 wt% glass) at different amounts (e.g., C55 with 47 wt% ZrO2, 57 wt% ZrO2 and 68 wt% ZrO2). Al2O3/Glass and Al2O3/Glass/ZrO2 samples were fabricated by uniaxial dry pressing method. These compositions were determined for specific microwave applications due to their various dielectric constants. Densification behavior, phase formation, hardness, dielectric properties of the samples were characterized in this study. The optimum densification temperature was 800 ˚C for the C55, 1100 ˚C for the C55-47Z, 1150 ˚C for the C55-57Z and 1150 ˚C for the C55-68Z. X-ray diffraction proved that ZrO2 neither chemically reacted with other phases nor decomposed with temperature. Hardness slightly increased with increasing amount of ZrO2; 824 HV for the C55-47Z, 881 HV for the C55-57Z and 907 HV for C55-68Z. Dielectric constant for the C55-47Z and C55-68Z at 5 MHz were 11.7 and 16.3, respectively. For microwave applications, the C55-68Z sample as proposed due to high dielectric constant (16.3 at 5MHz, 14.79 at 1GHz, 14.43 GHz at 10GHz) and low dielectric loss (0.0032 at 5 MHz, 0.0045 at 1GHz and 0.0051 at 10 GHz).

References

  • Sebastian, M. T. (2008). Dielectric Materials for Wireless Communications, 1st ed. Amsterdam: Elsevier.
  • Ohsato, H. (2005). Research and development of microwave dielectric ceramics for wireless communications. Journal of the Ceramic Society of Japan, 113(1323), 703–711.
  • Plourde, J. K., & Ren, C.-L. (1981). Application of Dielectric Resonators in Microwave Components. IEEE Transactions on Microwave Theory and Techniques, 29, 754–770.
  • Ohsato, H., et al. (2004). Microwave-millimeterwave dielectric materials. Key Engineering Materials, 269, 195–198.
  • Freer, R., & Azough, F. (2008). Microstructural engineering of microwave dielectric ceramics. Journal of the European Ceramic Society, 28(7), 1433–1441.
  • Takata, M., & Kageyama, K. (1989). Microwave Characteristics of A(B1/2 B1/2)O3 Ceramics (A = Ba, Ca, Sr; B3+ = La, Nd, Sm, Yb; B5+ = Nb, Ta). Journal of Materials Science, 59, 1955–1959.
  • Cary, R. H. (1974). Avionic Radome Materials. Paris.
  • Alford, N. M. N., & Penn, S. J. (1996). Sintered alumina with low dielectric loss. Journal of Applied Physics, 80(10), 5895–5898.
  • Chiang, C. C., Wang, S. F., Wang, Y. R., & Wei, W. C. J. (2008). Densification and microwave dielectric properties of CaO-B2O3-SiO2 system glass-ceramics. Ceramics International, 34(3), 599–604.
  • Wu, J. M., & Huang, H. L. (1999). Microwave properties of zinc, barium and lead borosilicate glasses. Journal of Non-Crystalline Solids, 260(1–2), 116–124.
  • Choi, Y. J., et al. (2006). Co-firing and shrinkage matching in low- and middle-permittivity dielectric compositions for a low-temperature co-fired ceramics system. Journal of the American Ceramic Society, 89(2), 562–567.
  • Seo, Y. J., Shin, D. J., & Cho, Y. S. (2006). Phase evolution and microwave dielectric properties of lanthanum borate-based low-temperature co-fired ceramics materials. Journal of the American Ceramic Society, 89(7), 2352–2355.
  • Ohishi, Y., Miyauchi, Y., Ohsato, H., & Kakimoto, K. I. (2004). Controlled temperature coefficient of resonant frequency of Al2O3-TiO2 ceramics by annealing treatment. Japanese Journal of Applied Physics, Part 2 Letters, 43(6A), 6–9.
  • Mandai, H., & Okube, S. (1992). Ceramics Transactions, 32, 91.
  • Krzmanc, M. M., Valant, M., & Suvorov, D. (2005). A structural and dielectric characterization of NaxCa1-xAl2-xSi2+xO8 (x = 0 and 1) ceramics. Journal of the European Ceramic Society, 25(12), 2835–2838.
  • Gao, W., Cao, S., Li, L., Wang, J., Liu, C., & Han, J. (2023). Network structure, crystallization behavior, and microwave dielectric properties of ZnO-B2O3 glass-ceramics with ZrO2 additions. Journal of Alloys and Compounds, 953, 170145.
  • Mao, H., Wang, F., Chen, X., Liu, Z., Li, W., & Zhang, W. (2023). Preparation of BaO–MgO–Al2O3–SiO2/Al2O3 glass-ceramic/ceramic LTCC substrate material for microwave application. Journal of Materials Science: Materials in Electronics, 34(4), 1–12.
  • Chung-Lun, W.-H. L., Lo, J.-G., & Duh, B.-S. C. (2002). Low-Temperature Sintering and Microwave Dielectric Properties of Anorthite-Based Glass-Ceramics. Journal of the American Ceramic Society, 85(9), 2230–2235.
  • Dursun, G. M., & Duran, C. (2019). Glass alumina composites for functional and structural applications. Ceramics International, 45(9), 12550–12557.
  • Kingery, W. D. (1997). Introduction to Ceramics. Journal of the Electrochemical Society, 124, 152C.
  • Bilaç, O., & Duran, C. (2023). Mechanical, thermal, and dielectric properties of glass mullite composites for low-temperature co-fired ceramic and radome applications. International Journal of Applied Ceramic Technology, 3287–329.
  • Bilaç, O., & Duran, C. (2023). Effect of nano aluminum nitride filler on mechanical, thermal, and dielectric properties of the glass/mullite composites for low-temperature co-fired ceramic applications. Journal of the American Ceramic Society, 106(8), 4902–4910.
  • Liu, J. Z., Yao, Z. H., Xu, N. X., Zhang, Q. L., & Yang, H. (2016). Densification behavior and dielectric properties of CaO-B2O3-SiO2 system glass-ceramics containing ZrO2. Key Engineering Materials, 697, 253–256.
  • Zhang, L., Olhero, S., & Ferreira, J. M. F. (2016). Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics. Ceramics International, 42(15), 16897–16905.
  • Marais, F., Sigalas, I., & Whitefield, D. (2022). The effects of the addition of tetragonal-ZrO2 on the mechanical properties of MgAl2O4 – ZrO2 composites. Ceramics International, 48(1), 563–568.
  • Gurevich, V. L., & Tagantsev, A. K. (1991). Intrinsic dielectric loss in crystals. Advances in Physics, 40(6), 719–767.
  • Sebastian, M. T., Silva, M. A. S., & Sombra, A. S. B. (2017.). Measurement of Microwave Dielectric Properties and Factors Affecting Them. In M. T. Sebastian, H. Jantunen, & R. Ubic (Eds.), Microwave Materials and Applications 2V Set, I & II, First Edition.

Mikrodalga Uygulamaları İçin Al2O3/Cam/ZrO2 Seramiklerinin Yoğunlaştırılması ve Karakterizasyonu

Year 2024, Volume: 11 Issue: 2, 335 - 342, 29.11.2024
https://doi.org/10.35193/bseufbd.1364294

Abstract

Bu çalışmada Al2O3/cam/ZrO2 kompozitlerin yoğunlaşma davranışı, faz oluşumu, sertliği ve dielektrik özellikleri karakterize edilmiştir. Alümina, CaO-Al2O3-SiO2 bazlı ticari cam ve nano zirkonyum oksit başlangıç malzemesi olarak kullanılmıştır. ZrO2, C55 tozuna (ağırlıkça %45 Al2O3+ ağırlıkça %55 cam) farklı miktarlarda (örneğin, ağırlıkça %47 ZrO2, ağırlıkça %57 ZrO2 ve ağırlıkça %68 ZrO2 içeren C55) ilave edilmiştir. Al2O3/Cam ve Al2O3/Cam/ZrO2 numuneleri tek eksenli kuru presleme yöntemiyle üretilmiştir. Optimum yoğunlaştırma sıcaklığı C55 için 800 ˚C, C55-47Z için 1100 ˚C, C55-57Z için 1150 ˚C ve C55-68Z için 1150 ˚C olduğu tespit edilmiştir. ZrO2 diğer fazlarla kimyasal olarak reaksiyona girmemiştir ve sıcaklıkla bozunmamıştır. ZrO2 miktarının artmasıyla sertlik kademeli olarak artmıştır. C55-47Z için 824 HV, C55-57Z için 881 HV ve C55-68Z için 907 HV olduğu saptanmıştır. C55-47Z ve C55-68Z'nin 5 MHz'deki dielektrik sabiti sırasıyla 11.7 ve 16.3 olduğu bulunmuştur. Mikrodalga uygulamaları için, yüksek dielektrik sabiti (5MHz'de 16.3, 1GHz'de 14.79 ve 10GHz'de 14.43) ve düşük dielektrik kaybı (5MHz'de 0.0032, 1GHz’de 0.0045 ve 10 GHz’de 0.0051) nedeniyle C55-68Z numunesi önerilmiştir.

References

  • Sebastian, M. T. (2008). Dielectric Materials for Wireless Communications, 1st ed. Amsterdam: Elsevier.
  • Ohsato, H. (2005). Research and development of microwave dielectric ceramics for wireless communications. Journal of the Ceramic Society of Japan, 113(1323), 703–711.
  • Plourde, J. K., & Ren, C.-L. (1981). Application of Dielectric Resonators in Microwave Components. IEEE Transactions on Microwave Theory and Techniques, 29, 754–770.
  • Ohsato, H., et al. (2004). Microwave-millimeterwave dielectric materials. Key Engineering Materials, 269, 195–198.
  • Freer, R., & Azough, F. (2008). Microstructural engineering of microwave dielectric ceramics. Journal of the European Ceramic Society, 28(7), 1433–1441.
  • Takata, M., & Kageyama, K. (1989). Microwave Characteristics of A(B1/2 B1/2)O3 Ceramics (A = Ba, Ca, Sr; B3+ = La, Nd, Sm, Yb; B5+ = Nb, Ta). Journal of Materials Science, 59, 1955–1959.
  • Cary, R. H. (1974). Avionic Radome Materials. Paris.
  • Alford, N. M. N., & Penn, S. J. (1996). Sintered alumina with low dielectric loss. Journal of Applied Physics, 80(10), 5895–5898.
  • Chiang, C. C., Wang, S. F., Wang, Y. R., & Wei, W. C. J. (2008). Densification and microwave dielectric properties of CaO-B2O3-SiO2 system glass-ceramics. Ceramics International, 34(3), 599–604.
  • Wu, J. M., & Huang, H. L. (1999). Microwave properties of zinc, barium and lead borosilicate glasses. Journal of Non-Crystalline Solids, 260(1–2), 116–124.
  • Choi, Y. J., et al. (2006). Co-firing and shrinkage matching in low- and middle-permittivity dielectric compositions for a low-temperature co-fired ceramics system. Journal of the American Ceramic Society, 89(2), 562–567.
  • Seo, Y. J., Shin, D. J., & Cho, Y. S. (2006). Phase evolution and microwave dielectric properties of lanthanum borate-based low-temperature co-fired ceramics materials. Journal of the American Ceramic Society, 89(7), 2352–2355.
  • Ohishi, Y., Miyauchi, Y., Ohsato, H., & Kakimoto, K. I. (2004). Controlled temperature coefficient of resonant frequency of Al2O3-TiO2 ceramics by annealing treatment. Japanese Journal of Applied Physics, Part 2 Letters, 43(6A), 6–9.
  • Mandai, H., & Okube, S. (1992). Ceramics Transactions, 32, 91.
  • Krzmanc, M. M., Valant, M., & Suvorov, D. (2005). A structural and dielectric characterization of NaxCa1-xAl2-xSi2+xO8 (x = 0 and 1) ceramics. Journal of the European Ceramic Society, 25(12), 2835–2838.
  • Gao, W., Cao, S., Li, L., Wang, J., Liu, C., & Han, J. (2023). Network structure, crystallization behavior, and microwave dielectric properties of ZnO-B2O3 glass-ceramics with ZrO2 additions. Journal of Alloys and Compounds, 953, 170145.
  • Mao, H., Wang, F., Chen, X., Liu, Z., Li, W., & Zhang, W. (2023). Preparation of BaO–MgO–Al2O3–SiO2/Al2O3 glass-ceramic/ceramic LTCC substrate material for microwave application. Journal of Materials Science: Materials in Electronics, 34(4), 1–12.
  • Chung-Lun, W.-H. L., Lo, J.-G., & Duh, B.-S. C. (2002). Low-Temperature Sintering and Microwave Dielectric Properties of Anorthite-Based Glass-Ceramics. Journal of the American Ceramic Society, 85(9), 2230–2235.
  • Dursun, G. M., & Duran, C. (2019). Glass alumina composites for functional and structural applications. Ceramics International, 45(9), 12550–12557.
  • Kingery, W. D. (1997). Introduction to Ceramics. Journal of the Electrochemical Society, 124, 152C.
  • Bilaç, O., & Duran, C. (2023). Mechanical, thermal, and dielectric properties of glass mullite composites for low-temperature co-fired ceramic and radome applications. International Journal of Applied Ceramic Technology, 3287–329.
  • Bilaç, O., & Duran, C. (2023). Effect of nano aluminum nitride filler on mechanical, thermal, and dielectric properties of the glass/mullite composites for low-temperature co-fired ceramic applications. Journal of the American Ceramic Society, 106(8), 4902–4910.
  • Liu, J. Z., Yao, Z. H., Xu, N. X., Zhang, Q. L., & Yang, H. (2016). Densification behavior and dielectric properties of CaO-B2O3-SiO2 system glass-ceramics containing ZrO2. Key Engineering Materials, 697, 253–256.
  • Zhang, L., Olhero, S., & Ferreira, J. M. F. (2016). Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics. Ceramics International, 42(15), 16897–16905.
  • Marais, F., Sigalas, I., & Whitefield, D. (2022). The effects of the addition of tetragonal-ZrO2 on the mechanical properties of MgAl2O4 – ZrO2 composites. Ceramics International, 48(1), 563–568.
  • Gurevich, V. L., & Tagantsev, A. K. (1991). Intrinsic dielectric loss in crystals. Advances in Physics, 40(6), 719–767.
  • Sebastian, M. T., Silva, M. A. S., & Sombra, A. S. B. (2017.). Measurement of Microwave Dielectric Properties and Factors Affecting Them. In M. T. Sebastian, H. Jantunen, & R. Ubic (Eds.), Microwave Materials and Applications 2V Set, I & II, First Edition.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials, Ceramics in Materials Engineering
Journal Section Articles
Authors

Oğuzhan Bilaç 0000-0003-3642-4262

Publication Date November 29, 2024
Submission Date September 21, 2023
Acceptance Date October 31, 2023
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Bilaç, O. (2024). Mikrodalga Uygulamaları İçin Al2O3/Cam/ZrO2 Seramiklerinin Yoğunlaştırılması ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(2), 335-342. https://doi.org/10.35193/bseufbd.1364294