Review
BibTex RIS Cite

Use of Cyanobacteria as Food and Food Component

Year 2025, Volume: 12 Issue: 1, 376 - 383, 30.05.2025
https://doi.org/10.35193/bseufbd.1537475

Abstract

Microalgae are seen as a sustainable food source of the future with both functional quality and nutritional value thanks to their rich biochemical composition. It has a richer content than various nutrients, with its carbohydrate, lipid, quality protein, vitamin and mineral composition. Accordingly, it shows beneficial effects, such as antitumor, antihypertensive, anti-inflammatory, antioxidant, antibacterial, antiviral, and the rich bioactive composition of the products. The use of microalgae in human foods, such as biscuits and snacks, increases the nutritional value and improves the structure of the food; In animal products, they are areas of increasing productivity by adding them to the structure of feed. In some cases, nutritional components such as lipids, proteins and vitamins obtained from microalgae are pulverized and used in the form of nutritional supplements or in make-up materials with their pigmentation properties. The aim of this review is to examine the uses of microalgae in foods.

References

  • Metcalf, J.S., Banack, S.A., Richer, R., & Cox, P.A. (2015). Neurotoxic amino acids and their isomers in desert environments. Journal of Arid Environments, 112, 140-144
  • Carmichael, W.W., & Boyer, G.L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54, 194-212.
  • Lafarga, T., Fernández-Sevilla, J. M., González-López, C., & Acién-Fernández, F. G. (2020). Spirulina for the food and functional food industries. Food Research İnternational (Ottawa, Ont.), 137, 109356.
  • Pragya N., Pandey K.K., & Sahoo P.K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable Sustainable Energy Reviews, 24, 159-171.
  • Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for High-Value Products Towards Human Health and Nutrition. Marine Drugs, 17(5), 304.
  • Barba, F. J., Grimi, N., & Vorobiev, E. (2015). New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Engineering Reviews, 7, 45-62.
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal Of Bioscience And Bioengineering, 101(2), 87–96.
  • Falconer, I. R. (1999). An overview of problems caused by toxic blue–green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology: An International Journal, 14(1), 5-12.
  • Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D., & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health. Arhiv Za Higijenu Rada İ Toksikologiju, 64(2), 119–130. https://doi.org/10.2478/10004-1254-64-2013-2320
  • Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10), 1896-1917.
  • Griffiths, D. J., & Saker, M. L. (2003). The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin. Environmental Toxicology: An International Journal, 18(2), 78-93.
  • Kuiper-Goodman, T., Falconer, I., & Fitzgerald, J. (1999). Human health aspects. In: Chorus, I. & Bartram, J., Eds., Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring, and Management. E & FN Spon, London, UK, 112–153.
  • Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196-1206.
  • Mutalipassi, M., Fink, P., Maibam, C., Porzio, L., Buia, MC, Gambi, MC, Patti, F. P., Scipione, M. B., Lorent, M., & Zupo, V. (2020). Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrass Posidonia oceanica. Journal of Experimental Marine Biology and Ecology, 530 , 151435.
  • Mutalipassi, M., Riccio, G., Mazzella, V., Galasso, C., Somma, E., Chiarore, A., de Pascale, D., & Zupo, V. (2021). Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives. Marine Drugs, 19(4), 227.
  • Chouhan, P. K., & Kumawat, D. K. (2014). Screening of Cyanobacteria from Black Cotton soil and evaluate their potential to survive under wet and dry condition for biofertilizer production. Sch J Agric Vet Sci, 1(2), 90-99.
  • Minocheherhomji, F.P., & Pradhan, A. (2016). Evaluation of total protein production by soil cyanobacteria in culturefiltrate at various incubations periods. International Journal of advances in Pharmacy, Biology and Chemistry, 5:346, 349
  • Vasconcelos, V., Leao, P., & Campos, A. (2015). Cyanobacterial toxins. Phycotoxins: Chemistry and Biochemistry, Spain, 225-238.
  • Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., & Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans - Biotechnological and environmental aspects. Chemosphere, 271, 129800.
  • Demirbaş, A., & Demirbaş, MF (2011). Biyodizel kaynağı olarak alg yağının önemi. Enerji dönüşümü ve yönetimi, 52 (1), 163-170.
  • Craggs, R. J., Adey, W. H., Jenson, K. R., John, M. S. S., Green, F. B., & Oswald, W. J. (1996). Phosphorus removal from wastewater using an algal turf scrubber. Water Science and Technology, 33(7), 191-198.
  • Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25, 743-756.
  • Rocca, S., Agostini, A., Giuntoli, J., & Marelli, L. (2015). Biofuels from algae: technology options, energy balance and GHG emissions. JRC Available at: http://publications. jrc. ec. europa. eu/repository/bitstream/JRC98760/algae_biofuels_report_21122015. pdf.
  • Elcik, H., & Çakmakcı, M. (2017). Mikroalglerden Yenilenebilir Biyoyakit Üretimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3), 795-820.
  • Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology advances, 30(3), 709–732.
  • Mubarak M., Shaija A., & Suchithra T. V. (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7, 117-123.
  • Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 34(2), 77-88.
  • Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
  • Tan, K. Y., Low, S. S., Manickam, S., Ma, Z., Banat, F., Munawaroh, H. S. H., & Show, P. L. (2023). Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Research İnternational, 169, 112870.
  • Bishop, W. M., & Zubeck, H. M. (2012). Evaluation of microalgae for use as nutraceuticals and nutritional supplements. Journal of Nutrition & Food Sciences, 2(5), 1-6.
  • Silva, S. C., Ferreira, I. C., Dias, M. M., & Barreiro, M. F. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules, 25(15), 3406.
  • Man, C. H., Shimura, Y., & Suzuki, I. (2022). Identification of extracellular proteases induced by nitrogen-limited conditions in the thraustochytrids Schizochytrium aggregatum ATCC 28209. Marine Biotechnology, 24(1), 243-254.
  • Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486.
  • Haimeur, A., Ulmann, L., Mimouni, V., Guéno, F., Pineau-Vincent, F., Meskini, N., & Tremblin, G. (2012). The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids in Health and Disease, 11(1), 1-13.
  • Galasso, C., Gentile, A., Orefice, I., Ianora, A., Bruno, A., Noonan, D. M., Sansone, C., Albini, A., & Brunet, C. (2019). Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients, 11(6), 1226.
  • Xia, S., Gao, B., Li, A., Xiong, J., Ao, Z., & Zhang, C. (2014). Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs, 12(9), 4883-4897.
  • Lauritano, C., Andersen, J. H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K., Romano, G., & Ianora, A. (2016). Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Frontiers in Marine Science, 3, 68.
  • Beetul K., Gopeechund A., Kaullysing D., Mattan-Moorgawa S., Puchooa D., & Bhagooli R. (2016). Challenges and Opportunities in the Present Era of Marine Algal Applications. In: Thajuddin N., Dhanasekaran D., editors. Algae-Organisms for Imminent Biotechnology, 237–276.
  • Hur, S. B., Bae, J. H., Youn, J. Y., & Jo, M. J. (2015). KMMCC-Korea marine microalgae culture center: list of strains. Algae, 30(sup), 1-188.
  • Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The True Value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109-4115.
  • Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C., & Mendes, M. A. (2018). Chlorella and Spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements, 6(1), 45-58.
  • Chittora, D., Meena, M., Barupal, T., & Swapnil, P. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22, 100737.
  • da Silva, S. C., Fernandes, I. P., Barros, L., Fernandes, Â., Alves, M. J., Calhelha, R. C., Pereira, C., Barreira, J., Manrique, Y., Colla, E., Ferreira, I., & Barreiro, M. F. (2019). Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 60, 103427.
  • Chacón-Lee, T.L., & González-Mariño, G.E. (2010), Microalgae for “Healthy” Foods—Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9: 655-675.
  • García, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10(5), 1017–1024.
  • Sorrenti, V., Castagna, D. A., Fortinguerra, S., Buriani, A., Scapagnini, G., & Willcox, D. C. (2021). Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Marine Drugs, 19(6), 293.
  • Ekmay, R., Gatrell, S., Lum, K., Kim, J., & Lei, X. G. (2014). Nutritional and metabolic impacts of a defatted green marine microalgal (Desmodesmus sp.) biomass in diets for weanling pigs and broiler chickens. Journal of Agricultural and Food Chemistry, 62(40), 9783-9791.
  • Graham, A. E., & Ledesma-Amaro, R. (2023). The microbial food revolution. Nature Communications, 14(1), 2231.
  • Liu, D., Liberton, M., Hendry, L.I., Aminian-Dehkordi, J., Maranas C.D., & Pakrasi H.B. (2021). Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 67, 1-6.
  • Watson, S., Monis, P., Baker, P., & Giglio, S. (2016) Biochemistry and genetics of taste- and odor-producing cyanobacteria. Harmful Algae, 54, 112-127.

Siyanobakterilerin Gıda ve Gıda Bileşeni Olarak Kullanımı

Year 2025, Volume: 12 Issue: 1, 376 - 383, 30.05.2025
https://doi.org/10.35193/bseufbd.1537475

Abstract

Mikroalgler zengin biyokimyasal bileşimleri sayesinde hem fonksiyonel kalite hem de besin değeri özelliğiyle geleceğin sürdürülebilir bir gıda kaynağı olarak görülmektedir. Karbonhidrat, lipit, kaliteli protein, vitamin, mineral bileşimi ile çeşitli besinlere göre daha zengin bir içeriğe sahiptir. Buna bağlı olarak antitümör, antihipertansif, antiinflamatuar, antioksidan, antibakteriyal, antiviral, ürünlerin zengin biyoaktif bileşimi gibi faydalı etkiler göstermektedir. Mikroalglerin kullanımı insan gıdalarında bisküvi, atıştırmalık gibi ürünlerde besleyici değerini arttırma, gıdanın yapısını geliştirme; hayvansal ürünlerde ise yemlerin yapısına eklenerek verimliliği arttırma alanlarıdır. Bazı durumlarda ise mikroalglerden elde edilen lipit, protein, vitamin gibi besin bileşenleri toz hale getirilerek besin takviyeleri formunda, pigmentasyon özelliği ile makyaj malzemelerinde yararlanılmaktadır. Bu derlemenin amacı mikroalglerin gıdalarda kullanım alanlarının incelenmesidir.

References

  • Metcalf, J.S., Banack, S.A., Richer, R., & Cox, P.A. (2015). Neurotoxic amino acids and their isomers in desert environments. Journal of Arid Environments, 112, 140-144
  • Carmichael, W.W., & Boyer, G.L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54, 194-212.
  • Lafarga, T., Fernández-Sevilla, J. M., González-López, C., & Acién-Fernández, F. G. (2020). Spirulina for the food and functional food industries. Food Research İnternational (Ottawa, Ont.), 137, 109356.
  • Pragya N., Pandey K.K., & Sahoo P.K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable Sustainable Energy Reviews, 24, 159-171.
  • Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for High-Value Products Towards Human Health and Nutrition. Marine Drugs, 17(5), 304.
  • Barba, F. J., Grimi, N., & Vorobiev, E. (2015). New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Engineering Reviews, 7, 45-62.
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal Of Bioscience And Bioengineering, 101(2), 87–96.
  • Falconer, I. R. (1999). An overview of problems caused by toxic blue–green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology: An International Journal, 14(1), 5-12.
  • Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D., & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health. Arhiv Za Higijenu Rada İ Toksikologiju, 64(2), 119–130. https://doi.org/10.2478/10004-1254-64-2013-2320
  • Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10), 1896-1917.
  • Griffiths, D. J., & Saker, M. L. (2003). The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin. Environmental Toxicology: An International Journal, 18(2), 78-93.
  • Kuiper-Goodman, T., Falconer, I., & Fitzgerald, J. (1999). Human health aspects. In: Chorus, I. & Bartram, J., Eds., Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring, and Management. E & FN Spon, London, UK, 112–153.
  • Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196-1206.
  • Mutalipassi, M., Fink, P., Maibam, C., Porzio, L., Buia, MC, Gambi, MC, Patti, F. P., Scipione, M. B., Lorent, M., & Zupo, V. (2020). Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrass Posidonia oceanica. Journal of Experimental Marine Biology and Ecology, 530 , 151435.
  • Mutalipassi, M., Riccio, G., Mazzella, V., Galasso, C., Somma, E., Chiarore, A., de Pascale, D., & Zupo, V. (2021). Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives. Marine Drugs, 19(4), 227.
  • Chouhan, P. K., & Kumawat, D. K. (2014). Screening of Cyanobacteria from Black Cotton soil and evaluate their potential to survive under wet and dry condition for biofertilizer production. Sch J Agric Vet Sci, 1(2), 90-99.
  • Minocheherhomji, F.P., & Pradhan, A. (2016). Evaluation of total protein production by soil cyanobacteria in culturefiltrate at various incubations periods. International Journal of advances in Pharmacy, Biology and Chemistry, 5:346, 349
  • Vasconcelos, V., Leao, P., & Campos, A. (2015). Cyanobacterial toxins. Phycotoxins: Chemistry and Biochemistry, Spain, 225-238.
  • Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., & Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans - Biotechnological and environmental aspects. Chemosphere, 271, 129800.
  • Demirbaş, A., & Demirbaş, MF (2011). Biyodizel kaynağı olarak alg yağının önemi. Enerji dönüşümü ve yönetimi, 52 (1), 163-170.
  • Craggs, R. J., Adey, W. H., Jenson, K. R., John, M. S. S., Green, F. B., & Oswald, W. J. (1996). Phosphorus removal from wastewater using an algal turf scrubber. Water Science and Technology, 33(7), 191-198.
  • Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25, 743-756.
  • Rocca, S., Agostini, A., Giuntoli, J., & Marelli, L. (2015). Biofuels from algae: technology options, energy balance and GHG emissions. JRC Available at: http://publications. jrc. ec. europa. eu/repository/bitstream/JRC98760/algae_biofuels_report_21122015. pdf.
  • Elcik, H., & Çakmakcı, M. (2017). Mikroalglerden Yenilenebilir Biyoyakit Üretimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3), 795-820.
  • Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology advances, 30(3), 709–732.
  • Mubarak M., Shaija A., & Suchithra T. V. (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7, 117-123.
  • Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 34(2), 77-88.
  • Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
  • Tan, K. Y., Low, S. S., Manickam, S., Ma, Z., Banat, F., Munawaroh, H. S. H., & Show, P. L. (2023). Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Research İnternational, 169, 112870.
  • Bishop, W. M., & Zubeck, H. M. (2012). Evaluation of microalgae for use as nutraceuticals and nutritional supplements. Journal of Nutrition & Food Sciences, 2(5), 1-6.
  • Silva, S. C., Ferreira, I. C., Dias, M. M., & Barreiro, M. F. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules, 25(15), 3406.
  • Man, C. H., Shimura, Y., & Suzuki, I. (2022). Identification of extracellular proteases induced by nitrogen-limited conditions in the thraustochytrids Schizochytrium aggregatum ATCC 28209. Marine Biotechnology, 24(1), 243-254.
  • Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486.
  • Haimeur, A., Ulmann, L., Mimouni, V., Guéno, F., Pineau-Vincent, F., Meskini, N., & Tremblin, G. (2012). The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids in Health and Disease, 11(1), 1-13.
  • Galasso, C., Gentile, A., Orefice, I., Ianora, A., Bruno, A., Noonan, D. M., Sansone, C., Albini, A., & Brunet, C. (2019). Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients, 11(6), 1226.
  • Xia, S., Gao, B., Li, A., Xiong, J., Ao, Z., & Zhang, C. (2014). Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs, 12(9), 4883-4897.
  • Lauritano, C., Andersen, J. H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K., Romano, G., & Ianora, A. (2016). Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Frontiers in Marine Science, 3, 68.
  • Beetul K., Gopeechund A., Kaullysing D., Mattan-Moorgawa S., Puchooa D., & Bhagooli R. (2016). Challenges and Opportunities in the Present Era of Marine Algal Applications. In: Thajuddin N., Dhanasekaran D., editors. Algae-Organisms for Imminent Biotechnology, 237–276.
  • Hur, S. B., Bae, J. H., Youn, J. Y., & Jo, M. J. (2015). KMMCC-Korea marine microalgae culture center: list of strains. Algae, 30(sup), 1-188.
  • Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The True Value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109-4115.
  • Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C., & Mendes, M. A. (2018). Chlorella and Spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements, 6(1), 45-58.
  • Chittora, D., Meena, M., Barupal, T., & Swapnil, P. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22, 100737.
  • da Silva, S. C., Fernandes, I. P., Barros, L., Fernandes, Â., Alves, M. J., Calhelha, R. C., Pereira, C., Barreira, J., Manrique, Y., Colla, E., Ferreira, I., & Barreiro, M. F. (2019). Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 60, 103427.
  • Chacón-Lee, T.L., & González-Mariño, G.E. (2010), Microalgae for “Healthy” Foods—Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9: 655-675.
  • García, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10(5), 1017–1024.
  • Sorrenti, V., Castagna, D. A., Fortinguerra, S., Buriani, A., Scapagnini, G., & Willcox, D. C. (2021). Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Marine Drugs, 19(6), 293.
  • Ekmay, R., Gatrell, S., Lum, K., Kim, J., & Lei, X. G. (2014). Nutritional and metabolic impacts of a defatted green marine microalgal (Desmodesmus sp.) biomass in diets for weanling pigs and broiler chickens. Journal of Agricultural and Food Chemistry, 62(40), 9783-9791.
  • Graham, A. E., & Ledesma-Amaro, R. (2023). The microbial food revolution. Nature Communications, 14(1), 2231.
  • Liu, D., Liberton, M., Hendry, L.I., Aminian-Dehkordi, J., Maranas C.D., & Pakrasi H.B. (2021). Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 67, 1-6.
  • Watson, S., Monis, P., Baker, P., & Giglio, S. (2016) Biochemistry and genetics of taste- and odor-producing cyanobacteria. Harmful Algae, 54, 112-127.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Hydrobiology, Aquatic Toxicology , Bacteriology
Journal Section Articles
Authors

Merve Karakurluk 0009-0002-2301-1282

Tuğba Demiriz Yücer 0000-0002-2494-4511

Publication Date May 30, 2025
Submission Date August 22, 2024
Acceptance Date October 27, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Karakurluk, M., & Demiriz Yücer, T. (2025). Siyanobakterilerin Gıda ve Gıda Bileşeni Olarak Kullanımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 376-383. https://doi.org/10.35193/bseufbd.1537475