Research Article
BibTex RIS Cite

Bilişsel Kablosuz Algılayıcı Ağlar için IEEE 802.22 tabanlı Düğüm Yerleştirme Yaklaşımının Performans Değerlendirmesi

Year 2025, Volume: 12 Issue: 1, 321 - 332, 30.05.2025
https://doi.org/10.35193/bseufbd.1590938

Abstract

Bu çalışmada, bilişsel kablosuz bölgesel alan ağı (WRAN) teknolojisi tabanlı bir algılayıcı ağ yapısı önerilmektedir. WRAN teknolojisinde, bir tüketici tesis ekipmanı (CPE) ve bir baz istasyonu, mevcut haberleşme sistemlerime herhangi bir zararlı müdahaleye neden olmadan, sabit kanallar aracılığıyla fırsatçı bir şekilde iletişim kurmaktadır. Ağ yapısında, CPE’ler sıcaklık, basınç gibi çevresel verileri algılayıp baz istasyonuna iletmek amacıyla zaman bölmeli çoklu erişim (TDMA) tekniğini kullanmaktadır. Önerilen algılayıcı düğüm yerleştirme tekniği sayesinde, geniş bir alana çok sayıda düğüm yerleştirilmiştir. Ayrıca, ağ sürdürülebilirliğini artırmak için bulanık mantık tabanlı röle seçimi yaklaşımı önerilmiştir. Çevresel parametreleri tespit etmek için algılayıcı düğümler tüm bölgeyi kapsayacak şekilde yerleştirilmiştir. Algılayıcı düğümlerin algıladığı veriler merkezi bir konumda sabit olarak bulunan toplayıcı istasyonda toplanmıştır. Önerdiğimiz tekniğin simülasyon modeli Riverbed Modeler kablosuz haberleşme yazılımı ile tasarlanmıştır. Önerdiğimiz algılayıcı düğüm yerleştirme ve röle düğüm seçimi yaklaşımları sayesinde en az sayıda kablosuz algılayıcı düğüm ile belirli bir alanın izlenmesi sağlanmıştır.

References

  • Tay, M., Senturk, A. (2022). New energy-aware cluster head selection algorithm for wireless sensor networks. Wireless Pers Commun., 122, 2235-2251.
  • Li, D., Liu, W., Jiang, J. (2011). Placement optimization of actuator and sensor and decentralized adaptive fuzzy vibration control for large space intelligent truss structure. Sci. China Technol. Sci., 54, 853-861.
  • Leitold, D., Vathy-Fogarassy, A., Abonyi, J. (2018). Network distance-based simulated annealing and fuzzy clustering for sensor placement ensuring observability and minimal relative degree, Sensors, 18(9), 3096.
  • Zhang, X. X., Li, H. X., Qi, C. K. (2010). Spatially constrained fuzzy-clustering-based sensor placement for spatiotemporal fuzzy-control system, IEEE Trans. Fuzzy Syst., 18(5), 946-957.
  • Francés-Chust, J., Brentan, B. M., Carpitella, S., Izquierdo, J., Montalvo, I. (2020). Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence, Water, 12(2), 493.
  • Peng, X., Garg, H., Luo, Z. (2023). When content-centric networking meets multi-criteria group decision-making: Optimal cache placement policy achieved by MARCOS with q-rung orthopair fuzzy set pair analysis, Eng. Appl. Artif. Intell., 123(A), 106231.
  • Somesula, M. K., Kotte, A., Annadanam, S. C. (2022). Deadline-aware cache placement scheme using fuzzy reinforcement learning in device-to-device mobile edge networks, Mobile Netw Appl., 27, 2100-2117.
  • Irid, S. M. H., Hadjila, M., Hachemi, M. H., Souiki, S., Mosteghanemi, R., Mostefai, C. (2023). Node localization based on anchor placement using fuzzy c-means in a wireless sensor network, International Journal of Electronics and Telecommunications, 69(1), 99-104.
  • Zahedi, S. R., Jamali, S., Bayat, P. (2022). EmcFIS: evolutionary multi-criteria fuzzy inference system for virtual network function placement and routing, Appl. Soft Comput., 117, 108427.
  • Emami, H., Pashazadeh, S., Balafar, M. A. (2023). A novel fuzzy-based algorithm for ONU placement in FiWi broadband access network, Opt. Fiber Technol., 80, 103414.
  • Sun, K., Qu, J. (2023). Efficient photodetector placement using linear optimization fuzzy c-means and artificial neural networks, Journal of Electronics & Information Technology, 45(5), 1766-1773.
  • Shan, B., Li, X., Ji, H., Li, Y. (2017). A QoS-aware green cooperative compressed sensing scheme in IEEE 802.22 WRAN, Int. J. Commun. Syst., 30, e2890.
  • Stevenson, C. R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard, IEEE Commun. Mag., 47(1), 130-138.
  • Ko, G., Franklin, A. A., You, S. J., Pak, J. S., Song, M. S., Kim, C. J. (2010). Channel management in IEEE 802.22 WRAN systems, IEEE Commun. Mag., 48(9), 88-94.
  • Ukpong, U., Idowu-Bismark, O., Adetiba, E., Dare, O., Owolabi, E., Kala, R. J. (2024). Deep reinforcement learning applications for coexistence in television whitespace: A mini-review, International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 1-9.
  • Bino, J., Mohan, P. (2024). Analysis of dynamic cooperative spectrum sensing mechanism in IEEE 802.22 WRAN, C. R. Acad. Bulg. Sci., 77, 390-398.
  • Jain S. et al. (2024). Artificial neural network based spectrum sensing in wireless regional area network, IEEE Access, 12, 48941-48950.
  • Riverbed Modeler, Benzetim Yazılımı, https://www.riverbed.com/, Yayın Tarihi. Aralık, 2022. Erişim Tarihi. Aralık, 2023.

Performance Analysis of IEEE 802.22 based Node Placement Approach for Cognitive Wireless Sensor Networks

Year 2025, Volume: 12 Issue: 1, 321 - 332, 30.05.2025
https://doi.org/10.35193/bseufbd.1590938

Abstract

In this study, a sensor network structure based on cognitive wireless regional area network (WRAN) technology is proposed. In WRAN technology, a consumer premises equipment (CPE) and a base station communicate opportunistically via fixed channels without causing any harmful interference to existing communication systems. In the network structure, CPEs use the time division multiple access (TDMA) technique to detect environmental data, such as temperature, pressure, etc. and transmit them to the base station. With the help of node placement approach, a large number of sensor nodes are placed in a large area. Additionally, a fuzzy logic-based relay selection approach is proposed to improve network sustainability. To detect environmental parameters, sensor nodes are located to cover the whole area. The values detected by the sensor nodes were collected by the collector station fixed in the center. The simulation model of the proposed approach was implemented using Riverbed Modeler software. Thanks to the proposed node placement and relay node selection approaches, a certain area is monitored with a minimum number of wireless sensor nodes.

References

  • Tay, M., Senturk, A. (2022). New energy-aware cluster head selection algorithm for wireless sensor networks. Wireless Pers Commun., 122, 2235-2251.
  • Li, D., Liu, W., Jiang, J. (2011). Placement optimization of actuator and sensor and decentralized adaptive fuzzy vibration control for large space intelligent truss structure. Sci. China Technol. Sci., 54, 853-861.
  • Leitold, D., Vathy-Fogarassy, A., Abonyi, J. (2018). Network distance-based simulated annealing and fuzzy clustering for sensor placement ensuring observability and minimal relative degree, Sensors, 18(9), 3096.
  • Zhang, X. X., Li, H. X., Qi, C. K. (2010). Spatially constrained fuzzy-clustering-based sensor placement for spatiotemporal fuzzy-control system, IEEE Trans. Fuzzy Syst., 18(5), 946-957.
  • Francés-Chust, J., Brentan, B. M., Carpitella, S., Izquierdo, J., Montalvo, I. (2020). Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence, Water, 12(2), 493.
  • Peng, X., Garg, H., Luo, Z. (2023). When content-centric networking meets multi-criteria group decision-making: Optimal cache placement policy achieved by MARCOS with q-rung orthopair fuzzy set pair analysis, Eng. Appl. Artif. Intell., 123(A), 106231.
  • Somesula, M. K., Kotte, A., Annadanam, S. C. (2022). Deadline-aware cache placement scheme using fuzzy reinforcement learning in device-to-device mobile edge networks, Mobile Netw Appl., 27, 2100-2117.
  • Irid, S. M. H., Hadjila, M., Hachemi, M. H., Souiki, S., Mosteghanemi, R., Mostefai, C. (2023). Node localization based on anchor placement using fuzzy c-means in a wireless sensor network, International Journal of Electronics and Telecommunications, 69(1), 99-104.
  • Zahedi, S. R., Jamali, S., Bayat, P. (2022). EmcFIS: evolutionary multi-criteria fuzzy inference system for virtual network function placement and routing, Appl. Soft Comput., 117, 108427.
  • Emami, H., Pashazadeh, S., Balafar, M. A. (2023). A novel fuzzy-based algorithm for ONU placement in FiWi broadband access network, Opt. Fiber Technol., 80, 103414.
  • Sun, K., Qu, J. (2023). Efficient photodetector placement using linear optimization fuzzy c-means and artificial neural networks, Journal of Electronics & Information Technology, 45(5), 1766-1773.
  • Shan, B., Li, X., Ji, H., Li, Y. (2017). A QoS-aware green cooperative compressed sensing scheme in IEEE 802.22 WRAN, Int. J. Commun. Syst., 30, e2890.
  • Stevenson, C. R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard, IEEE Commun. Mag., 47(1), 130-138.
  • Ko, G., Franklin, A. A., You, S. J., Pak, J. S., Song, M. S., Kim, C. J. (2010). Channel management in IEEE 802.22 WRAN systems, IEEE Commun. Mag., 48(9), 88-94.
  • Ukpong, U., Idowu-Bismark, O., Adetiba, E., Dare, O., Owolabi, E., Kala, R. J. (2024). Deep reinforcement learning applications for coexistence in television whitespace: A mini-review, International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 1-9.
  • Bino, J., Mohan, P. (2024). Analysis of dynamic cooperative spectrum sensing mechanism in IEEE 802.22 WRAN, C. R. Acad. Bulg. Sci., 77, 390-398.
  • Jain S. et al. (2024). Artificial neural network based spectrum sensing in wireless regional area network, IEEE Access, 12, 48941-48950.
  • Riverbed Modeler, Benzetim Yazılımı, https://www.riverbed.com/, Yayın Tarihi. Aralık, 2022. Erişim Tarihi. Aralık, 2023.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Networking and Communications, Wireless Communication Systems and Technologies (Incl. Microwave and Millimetrewave)
Journal Section Articles
Authors

Hüseyin Ekici 0009-0003-2892-3325

Muhammed Enes Bayrakdar 0000-0001-9446-0988

Publication Date May 30, 2025
Submission Date November 25, 2024
Acceptance Date January 4, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Ekici, H., & Bayrakdar, M. E. (2025). Bilişsel Kablosuz Algılayıcı Ağlar için IEEE 802.22 tabanlı Düğüm Yerleştirme Yaklaşımının Performans Değerlendirmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 321-332. https://doi.org/10.35193/bseufbd.1590938