Bromofenol Mavisinin Pseudochloris wilhelmii ile Giderimi ve Daphnia magna Üzerindeki Akut Toksisitesi
Year 2025,
Volume: 12 Issue: 2, 456 - 465, 30.11.2025
Elif Betül Kağızman
,
Şeyda Fikirdesici Ergen
,
Burcu Ertit Taştan
Abstract
Boyaların farklı endüstriyel alanlarda kullanımı artmakta ve bu durum çevre sorunlarını da beraberinde getirmektedir. Boyalar atıksulardan farklı birçok fiziksel ve kimyasal arıtma tekniği ile giderilse de çevre dostu giderim teknolojilerine ihtiyaç duyulmaktadır. Pseudochloris wilhelmii birçok biyoteknolojik çalışmada kullanılmasına rağmen bromofenol mavisi giderimi ve toksisitesi henüz araştırılmamıştır. Ayrıca bromofenol mavisi boyasının biyolojik giderimi ve toksisitesi ile ilgili hemen hemen hiç çalışma bulunmamaktadır. Bu çalışmada bromofenol mavisinin biyolojik giderimi ve toksisitesi P. wilhelmii ve Daphnia magna üzerinde test edilmiştir. Maksimum biyolojik giderim 72. saatte %50.04 olarak 5.04 mg/L boya konsantrasyonunda elde edilmiştir. Chl (a+b) konsantrasyonu 0.196 µg/mL olarak kaydedilmiş ve çalışılan en yüksek boya konsantrasyonu olan 76.26 mg/L'de boya giderimi %5.66 olmuştur. Artan bromofenol mavisi konsantrasyonu mikroalg büyümesini tamamen engellememiştir. Bromofenol maruziyetinin D. magna üzerindeki etkileri 24, 48 ve 72. saatlerde incelenmiştir ve akut toksisite etkilerinin maruziyet süresiyle birlikte arttığı görülmüştür. En yüksek akut toksisite etkisi 72. saatte, D. magna için 129.038 mg/L'lik öldürücü bir konsantrasyon olarak belirlenmiştir. Çalışma sonucunda, P. wilhelmii'nin bromofenol mavisi gideriminde kullanılma potansiyeline sahip olduğu ve bu boyanın yüksek konsantrasyonlarda suda yaşayan organizmalar için toksik olabileceği sonucuna varılmıştır.
Ethical Statement
Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur.
Supporting Institution
TÜBİTAK
Thanks
Çalışmada kullanılan mikroorganizmalar TÜBİTAK 122Z742 nolu proje kapsamında Burcu ERTİT TAŞTAN tarafından izole edilmiştir.
References
-
Sharma, S., Sharma, G., Kumar, A., AlGarni, T. S., Naushad, M., ALOthman, Z. A., & Stadler, F. J. (2022). Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. Journal of Hazardous Materials, 421, 126729.
-
Li, H., Budarin, V. L., Clark, J. H., North, M., & Wu, X. (2022). Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. Journal of hazardous materials, 436, 129174.
-
Gao, H., Jiang, J., Huang, Y., Wang, H., Sun, J., Jin, Z., ... & Zhang, J. (2022). Synthesis of hydrogels for adsorption of anionic and cationic dyes in water: Ionic liquid as a crosslinking agent. SN Applied Sciences, 4(4), 118.
-
Akpomie, K. G., & Conradie, J. (2020). Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye. Scientific Reports, 10(1), 17094.
-
Akpomie, K. G., Adegoke, K. A., Oyedotun, K. O., Ighalo, J. O., Amaku, J. F., Olisah, C., ... & Conradie, J. (2024). Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefinery, 14(13), 13629-13657.
-
Mazaheri, H., Ghaedi, M., Asfaram, A., & Hajati, S. (2016). Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: using ultrasound power and optimization by central composite design. Journal of Molecular Liquids, 219, 667-676.
-
Rind, I. K., Sarı, A., Tuzen, M., & Saleh, T. A. (2024). Adsorption of bromophenol blue from aquatic media using polymer-modified silica fume: factorial design optimization, kinetic evaluation and adsorption mechanism. Inorganic Chemistry Communications, 168, 112953.
-
Singh, L., Singh, V. P., (2010). Biodegradation of Textile Dyes, BromophenolBlue and Congored by Fungus Aspergillus Flavus. Environment & We an International Journal of Science & Technology, 5, 235-242.
-
Zeroual, Y., Kim, B. S., Kim, C. S., Blaghen, M., Lee, K. M., (2006). A comparative study on biosorption characteristics of certain fungi for bromophenol blue dye. Applied Biochemistry and Biotechnology, 134(1):51-60.
-
122Z742 TUBITAK Project. Developing microalgae-based sustainable CO2 reduction strategies and investigating the potential of microalgal biomass as biodiesel, biodegradant and biosorbent-based green energy source 2022-2025.
-
Taştan, B. E., Duygu, E., İlbaş, M., Dönmez, G. (2013). Utilization of LPG and gasoline engine exhaust emissions by microalgae. Journal of Hazardous Materials, 246– 247, 173-180.
-
OECD 201 Freshwater Alga and Cyanobacteria, Growth Inhibition Test (2011). OECD Guideline for the testing of chemicals, Guideline 201.
-
Balusamy, B., Taştan, B.E., Ergen, Ş. F., Uyar, T., Tekinay, T. (2015). Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments. Environmental. Science : Processes Impacts, 17, 1265.
-
OECD 202 Daphnia sp., Acute Immobilisation Test (2004). OECD Guideline for the testing of chemicals, Guideline 202.
-
Porra, R.J., Thompson, W.A., Kreidemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384e394.
-
Tastan, B.E., Karatay, S.E., Dönmez, G. (2012). Bioremoval of textile dyes with different chemical structures by Aspergillus versicolor in molasses medium. Water Science and Technology, 66 (10), pp.2177-2184.
-
Ip, P.-F., Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 40, 733–738.
-
De Souza, P. R., do Carmo Ribeiro, T. M., Lôbo, A. P., Tokumoto, M. S., De Jesus, R. M., & Lôbo, I. P. (2020). Removal of bromophenol blue anionic dye from water using a modified exuviae of Hermetia illucens larvae as biosorbent. Environmental Monitoring and Assessment, 192, 1-16.
-
Abdullahi, M., Li, X., Abdallah, M. A., Stubbings, W. A., Yan, N. D., Barnard, M., Guo, L., Colbourne, J. K., & Orsini, L. (2022). Daphnia as a sentinel species for Environmental Health protection: A Perspective on Biomonitoring and Bioremediation of Chemical Pollution. Environmental Science & Technology, 56(20), 14237–14248.
-
Fikirdeşici, Ş., Altindağ, A., & Özdemir, E. (2012). Investigation of acute toxicity of cadmium-arsenic mixtures to Daphnia magna with toxic units approach. Turkish Journal of Zoology, 36(4), 543-550.
-
Gül, Ü. D., Senol, Z. M. & Tastan, B. E. (2022). Treatment of the Allura red food colorant contaminated water by a novel cyanobacteria Desertifilum tharense. Water Science and Technology, 85(1), 279-290.
-
Bayazit, G; Tastan, BE and Gül, ÜD (2020). Biosorption, isotherm and kinetic properties of common textile dye by Phormidium animale. Global Nest Journal, 22(1), 1-7.
-
Tastan, BE; Bakir, B and Dönmez, G (2023). Boron bio-mining by high boron-tolerant native microalgae in Turkey and boron toxicity in the aquatic environment. Water Science and Technology, 87(10), 2490-2503.
-
Liu, J., Yang, F., Cai, Y., Lu, G., Li, Y., Li, M., Fan, L., Gao, L. (2023). Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China. Eco Environment Health, 14;3(1):21-29.
-
Chipofya, V., Kraslawski, A., Avramenko, Y. (2010). Comparison of pollutant levels in effluent from wastewater treatment plants in Blantyre, Malawi. International Journal of Water Resources and Environmental Engineering, 4(2), 79-86.
-
United Nations Statistics Division. Indicator 6.3.1: Proportion of domestic and industrial wastewater flows safely treated. Available from: https://unstats.un.org/sdgs/metadata/files/Metadata-06-03-01.pdf
Bromophenol Blue Removal by Pseudochloris wilhelmii and Acute Toxicity on Daphnia magna
Year 2025,
Volume: 12 Issue: 2, 456 - 465, 30.11.2025
Elif Betül Kağızman
,
Şeyda Fikirdesici Ergen
,
Burcu Ertit Taştan
Abstract
The use of dyes is increasing in different industrial areas and this causes environmental problems. Although dyes are removed from wastewater with many different physical and chemical treatment techniques, there is a need for environmentally friendly removal technologies. Although Pseudochloris wilhelmii used in many biotechnological studies, bromophenol blue removal and toxicity have not been investigated yet. Furthermore, there are almost no studies on the bioremoval and toxicity of bromophenol blue dye. In this study bromophenol blue bioremoval and toxicity was tested on P. wilhelmii and Daphnia magna. The maximum bioremoval was obtained at 5.04 mg/L dye concentration as 50.04% at 72 hours. The chl (a+b) concentration was recorded as 0.196 µg/mL and dye removal was 5.66% at the highest dye concentration studied 76.26 mg/L. The increasing bromophenol blue concentration did not completely inhibit the microalgal growth. The effects of bromophenol exposure on D. magna were examined at 24, 48, and 72 hours, and it was observed that the acute toxicity effects increased with exposure time. The highest acute toxicity effect was determined at 72 hours, with a lethal concentration of 129.038 mg/L for D. magna. As a result of the study, it was concluded that P. wilhelmii has the potential to be used for bromophenol blue treatment and this dye may be toxic to aquatic organisms at high concentrations.
Ethical Statement
It is declared that scientific and ethical principles were followed during the preparation of this study and that all studies used are stated in the bibliography.
Supporting Institution
TÜBİTAK
Thanks
The microorganism used in this study was isolated within the scope of TUBITAK Project No 122Z742 of Burcu ERTİT TAŞTAN.
References
-
Sharma, S., Sharma, G., Kumar, A., AlGarni, T. S., Naushad, M., ALOthman, Z. A., & Stadler, F. J. (2022). Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. Journal of Hazardous Materials, 421, 126729.
-
Li, H., Budarin, V. L., Clark, J. H., North, M., & Wu, X. (2022). Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. Journal of hazardous materials, 436, 129174.
-
Gao, H., Jiang, J., Huang, Y., Wang, H., Sun, J., Jin, Z., ... & Zhang, J. (2022). Synthesis of hydrogels for adsorption of anionic and cationic dyes in water: Ionic liquid as a crosslinking agent. SN Applied Sciences, 4(4), 118.
-
Akpomie, K. G., & Conradie, J. (2020). Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye. Scientific Reports, 10(1), 17094.
-
Akpomie, K. G., Adegoke, K. A., Oyedotun, K. O., Ighalo, J. O., Amaku, J. F., Olisah, C., ... & Conradie, J. (2024). Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefinery, 14(13), 13629-13657.
-
Mazaheri, H., Ghaedi, M., Asfaram, A., & Hajati, S. (2016). Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: using ultrasound power and optimization by central composite design. Journal of Molecular Liquids, 219, 667-676.
-
Rind, I. K., Sarı, A., Tuzen, M., & Saleh, T. A. (2024). Adsorption of bromophenol blue from aquatic media using polymer-modified silica fume: factorial design optimization, kinetic evaluation and adsorption mechanism. Inorganic Chemistry Communications, 168, 112953.
-
Singh, L., Singh, V. P., (2010). Biodegradation of Textile Dyes, BromophenolBlue and Congored by Fungus Aspergillus Flavus. Environment & We an International Journal of Science & Technology, 5, 235-242.
-
Zeroual, Y., Kim, B. S., Kim, C. S., Blaghen, M., Lee, K. M., (2006). A comparative study on biosorption characteristics of certain fungi for bromophenol blue dye. Applied Biochemistry and Biotechnology, 134(1):51-60.
-
122Z742 TUBITAK Project. Developing microalgae-based sustainable CO2 reduction strategies and investigating the potential of microalgal biomass as biodiesel, biodegradant and biosorbent-based green energy source 2022-2025.
-
Taştan, B. E., Duygu, E., İlbaş, M., Dönmez, G. (2013). Utilization of LPG and gasoline engine exhaust emissions by microalgae. Journal of Hazardous Materials, 246– 247, 173-180.
-
OECD 201 Freshwater Alga and Cyanobacteria, Growth Inhibition Test (2011). OECD Guideline for the testing of chemicals, Guideline 201.
-
Balusamy, B., Taştan, B.E., Ergen, Ş. F., Uyar, T., Tekinay, T. (2015). Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments. Environmental. Science : Processes Impacts, 17, 1265.
-
OECD 202 Daphnia sp., Acute Immobilisation Test (2004). OECD Guideline for the testing of chemicals, Guideline 202.
-
Porra, R.J., Thompson, W.A., Kreidemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384e394.
-
Tastan, B.E., Karatay, S.E., Dönmez, G. (2012). Bioremoval of textile dyes with different chemical structures by Aspergillus versicolor in molasses medium. Water Science and Technology, 66 (10), pp.2177-2184.
-
Ip, P.-F., Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 40, 733–738.
-
De Souza, P. R., do Carmo Ribeiro, T. M., Lôbo, A. P., Tokumoto, M. S., De Jesus, R. M., & Lôbo, I. P. (2020). Removal of bromophenol blue anionic dye from water using a modified exuviae of Hermetia illucens larvae as biosorbent. Environmental Monitoring and Assessment, 192, 1-16.
-
Abdullahi, M., Li, X., Abdallah, M. A., Stubbings, W. A., Yan, N. D., Barnard, M., Guo, L., Colbourne, J. K., & Orsini, L. (2022). Daphnia as a sentinel species for Environmental Health protection: A Perspective on Biomonitoring and Bioremediation of Chemical Pollution. Environmental Science & Technology, 56(20), 14237–14248.
-
Fikirdeşici, Ş., Altindağ, A., & Özdemir, E. (2012). Investigation of acute toxicity of cadmium-arsenic mixtures to Daphnia magna with toxic units approach. Turkish Journal of Zoology, 36(4), 543-550.
-
Gül, Ü. D., Senol, Z. M. & Tastan, B. E. (2022). Treatment of the Allura red food colorant contaminated water by a novel cyanobacteria Desertifilum tharense. Water Science and Technology, 85(1), 279-290.
-
Bayazit, G; Tastan, BE and Gül, ÜD (2020). Biosorption, isotherm and kinetic properties of common textile dye by Phormidium animale. Global Nest Journal, 22(1), 1-7.
-
Tastan, BE; Bakir, B and Dönmez, G (2023). Boron bio-mining by high boron-tolerant native microalgae in Turkey and boron toxicity in the aquatic environment. Water Science and Technology, 87(10), 2490-2503.
-
Liu, J., Yang, F., Cai, Y., Lu, G., Li, Y., Li, M., Fan, L., Gao, L. (2023). Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China. Eco Environment Health, 14;3(1):21-29.
-
Chipofya, V., Kraslawski, A., Avramenko, Y. (2010). Comparison of pollutant levels in effluent from wastewater treatment plants in Blantyre, Malawi. International Journal of Water Resources and Environmental Engineering, 4(2), 79-86.
-
United Nations Statistics Division. Indicator 6.3.1: Proportion of domestic and industrial wastewater flows safely treated. Available from: https://unstats.un.org/sdgs/metadata/files/Metadata-06-03-01.pdf