Review
BibTex RIS Cite

SARS-CoV-2 Kökeni

Year 2020, , 1 - 9, 30.04.2020
https://doi.org/10.34084/bshr.712379

Abstract

Yeni tip bir insan koronavirüsü olan SARS-CoV-2’nin neden olduğu küresel salgın, tüm insanlık için endişe oluşturmaktadır. SARS-CoV-2, insan patojeni olarak tanımlanan yedinci koronavirüstür. Bu virüslerden, HKU1, NL63, OC43 ve 229E hafif belirtilere neden olabilirken, SARS-CoV, MERS-CoV ve SARS-CoV-2 ciddi hastalıklarla ilişkilidir. SARS-CoV-2 hücre içine giriş için tıpkı SARS-CoV gibi, anjiyotensin dönüştürücü enzim 2 (ACE2) reseptörünü kullanır ve SARS-CoV-2 S proteininde bulunan reseptör bağlanma alanı (RBA) bu reseptörlere güçlü bir şekilde bağlanabilir. Öte yandan, bir hayvan virüsünün insanları enfekte etmek için tür sınırlarını nasıl aştığına yönelik soruların yanıtlanması, gelecekteki zoonotik olayların nasıl önleneceğine dair değerli bilgiler verecektir. Salgının başlangıcından bu yana virüsün kökeni hakkında pek çok iddia ortaya atıldı. Bu derleme makalesinde, şimdiye kadar elde edilen veriler ışığında, virüsün kökeni hakkındaki ipuçlarını derledik. SARS-CoV-2 bazı yarasa virüslerine (RaTG-13) ve SARS-CoV'ye çok benzese de, daha önce tanımlanmayan benzersiz diziler içermektedir. RBD'deki amino asit dizileri açısından Pangolin CoV ile uyumlu olmasına rağmen, polibazik bölünme alanı benzersiz bir değişimin ürünüdür. Ayrıca, bu alandaki o-bağlı glikan kalıntıları, ancak bağışıklık tepkisi koşullarında elde edilebilecek bir kazanımdır. Her ne kadar kanıtlar SARS-CoV-2'nin manipüle edilmiş bir virüs olmadığını düşündürse de, şu anda bu köken teorilerini tam olarak kanıtlamak veya reddetmek mümkün değildir. Bir hayvan virüsünün tür sınırlarını aşarak insanları nasıl etkili bir şekilde enfekte edebileceğini anlamak gelecekteki zoonotik olayların önlenmesine yardımcı olacaktır. Doğal rezervuarlarının yaygınlığı nedeniyle, gelecekteki araştırmalar, bu virüslerin daha geniş coğrafi alanları kapsayan aktif gözetimine odaklanmalıdır.

References

  • 1. Bogoch II, Watts A, Thomas-Bachli A, et al. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. J Travel Med. 2020 Mar 13;27(2).
  • 2. https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.
  • 3. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7.
  • 4. Zhou, Peng, Yang, Xing-Lou, Wang, Xian-Guang, et al.-. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. https://doi.org/10.1101/2020.01.22.914952
  • 5. Wu, F, Zhao, S, Yu, B. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). https://doi.org/10.1038/s41586-020-2008-3
  • 6. Li C, Yang Y, Ren L. Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Infect Genet Evol. 2020 Mar 10;82:104285. doi: 10.1016/j.meegid.2020.104285.
  • 7. Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology. 2006 Jul 5;350(2):358-69.
  • 8. Chan, CM, Woo PC, Lau SK, et al. Spike Protein, S, of Human Coronavirus HKU1: Role in Viral Life Cycle and Application in Antibody Detection. Experimental Biology and Medicine. 2008. 233(12), 1527–15.
  • 9. Walls AC, Park YJ, Tortorici MA, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 6. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058.
  • 10. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507.
  • 11. Andersen, K.G., Rambaut, A., Lipkin, W.I. et al. The proximal origin of SARS-CoV-2. Nat Med (2020). https://doi.org/10.1038/s41591-020-0820-9.
  • 12. Liu P, Chen W, Chen JP. Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses. 2019 Oct 24;11(11). pii: E979. doi: 10.3390/v11110979.
  • 13. Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020 Mar 17;94(7). pii: e00127-20. doi: 10.1128/JVI.00127-20.
  • 14. Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology. 2018 Jul 1;28(7):443-467. doi: 10.1093/glycob/cwy021.
  • 15. F. Almazan, J.M. Gonzalez, Z. Penzes, et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome Proc. Natl. Acad. Sci. U.S.A., 97 (2000), pp. 5516-5521.
  • 16. B. Yount, K.M. Curtis, R.S. Baric Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model J. Virol., 74 (2000), pp. 10600-10611.
  • 17. V. Thiel, J. Herold, B. Schelle, et al. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus J. Gen. Virol., 82 (2001), pp. 1273-1281.
  • 18. Vineet D. Menachery, Boyd L. Yount Jr., Amy C. Sims, et al.. PNAS March 15, 2016 113 (11) 3048-3053; first published March 14, 2016 https://doi.org/10.1073/pnas.1517719113
  • 19. Tao Zhang, Qunfu Wu, Zhigang Zhang. Pangolin homology associated with 2019-nCoV. doi: https://doi.org/10.1101/2020.02.19.950253.
  • 20. Lam, T.T., Shum, M.H., Zhu, H. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature (2020). https://doi.org/10.1038/s41586-020-2169-0.
  • 21. P. Liu, W. Chen, J.-P. Chen, Viral metagenomics revealed sendai virus and coronavirus infection of Malayan Pangolins (Manis javanica). Viruses 11, 979 (2019).
  • 22. Rambaut, A. Preliminary Phylogenetic Analysis of 11 nCoV2019 Genomes, 2020-01-19. Available online: http://virological.org/t/preliminary-phylogenetic-analysis-of-11-ncov2019-genomes-2020-01-19/329 (accessed on 30 January 2020.
  • 23. Dudas G, Carvalho LM, Rambaut A, et al. Correction: MERS-CoV spillover at the camel-human interface. Elife. 2018 Apr 19;7. pii: e37324. doi: 10.7554/eLife.37324.
  • 24. Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 . Nature. 2013 Nov 28;503(7477):535-8. doi: 10.1038/nature12711. Epub 2013 Oct 30.
  • 25. Menachery VD, Yount BL Jr, Sims AC, et al.SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53. doi: 10.1073/pnas.1517719113.
  • 26. Ieva Bagdonaite, Hans H Wandall, Global aspects of viral glycosylation, Glycobiology, Volume 28, Issue 7, July 2018, Pages 443–467.
  • 27. Qiu Y, Zhao YB, Wang Q, et al. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 2020 Mar 18. pii: S1286-4579(20)30049-6. doi: 10.1016/j.micinf.2020.03.003.

The Origin of SARS-CoV-2

Year 2020, , 1 - 9, 30.04.2020
https://doi.org/10.34084/bshr.712379

Abstract

The ongoing pandemic of a new human coronavirus, SARS-CoV-2, has generated concern for all humanity. SARS-CoV-2 is the seventh coronavirus defined to human pathogens; HKU1, NL63, OC43, and 229E can cause mild symptoms, whereas SARS-CoV, MERS CoV, and SARS-CoV-2 are associated with severe disease. It has been shown that, similar to SARS-CoV, SARS-CoV-2 exploits the angiotensin-converting enzyme 2 (ACE2) receptor to gain entry inside the cells, and the receptor-binding domain (RBD) in SARS-CoV-2 S protein bound strongly to human and bat ACE2 receptors. On the other hand, answering how an animal virus has crossed species boundaries to infect humans will provide valuable information on how to prevent future zoonotic events. Many allegations have been raised about the origin of the virus since the outbreak began. In this review article, we have compiled clues about the origin of the virus, in the light of the data obtained so far. Although SARS-CoV-2 is very similar to some bat viruses (RaTG-13) and SARS-CoV, it contains unique sequences not previously defined. Although it is compatible with Pangolin CoV in terms of amino acid sequences in RBD, the polybasic cleavage area is the product of a unique change. Moreover, the o-linked glycan residues in this area are a unique that can be acquired in immune response conditions. Although evidence suggests that SARS-CoV-2 is not a manipulated virus, it is not currently possible to fully prove or refute these origin theories. Understanding how an animal virus can infect humans efficiently by crossing species limits will help prevent future zoonotic events. Natural reservoirs of coronaviruses have a widespread, that's why, future research should focus on active surveillance of these viruses, covering wider geographic areas.

References

  • 1. Bogoch II, Watts A, Thomas-Bachli A, et al. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. J Travel Med. 2020 Mar 13;27(2).
  • 2. https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.
  • 3. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7.
  • 4. Zhou, Peng, Yang, Xing-Lou, Wang, Xian-Guang, et al.-. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. https://doi.org/10.1101/2020.01.22.914952
  • 5. Wu, F, Zhao, S, Yu, B. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). https://doi.org/10.1038/s41586-020-2008-3
  • 6. Li C, Yang Y, Ren L. Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Infect Genet Evol. 2020 Mar 10;82:104285. doi: 10.1016/j.meegid.2020.104285.
  • 7. Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology. 2006 Jul 5;350(2):358-69.
  • 8. Chan, CM, Woo PC, Lau SK, et al. Spike Protein, S, of Human Coronavirus HKU1: Role in Viral Life Cycle and Application in Antibody Detection. Experimental Biology and Medicine. 2008. 233(12), 1527–15.
  • 9. Walls AC, Park YJ, Tortorici MA, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 6. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058.
  • 10. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507.
  • 11. Andersen, K.G., Rambaut, A., Lipkin, W.I. et al. The proximal origin of SARS-CoV-2. Nat Med (2020). https://doi.org/10.1038/s41591-020-0820-9.
  • 12. Liu P, Chen W, Chen JP. Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses. 2019 Oct 24;11(11). pii: E979. doi: 10.3390/v11110979.
  • 13. Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020 Mar 17;94(7). pii: e00127-20. doi: 10.1128/JVI.00127-20.
  • 14. Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology. 2018 Jul 1;28(7):443-467. doi: 10.1093/glycob/cwy021.
  • 15. F. Almazan, J.M. Gonzalez, Z. Penzes, et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome Proc. Natl. Acad. Sci. U.S.A., 97 (2000), pp. 5516-5521.
  • 16. B. Yount, K.M. Curtis, R.S. Baric Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model J. Virol., 74 (2000), pp. 10600-10611.
  • 17. V. Thiel, J. Herold, B. Schelle, et al. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus J. Gen. Virol., 82 (2001), pp. 1273-1281.
  • 18. Vineet D. Menachery, Boyd L. Yount Jr., Amy C. Sims, et al.. PNAS March 15, 2016 113 (11) 3048-3053; first published March 14, 2016 https://doi.org/10.1073/pnas.1517719113
  • 19. Tao Zhang, Qunfu Wu, Zhigang Zhang. Pangolin homology associated with 2019-nCoV. doi: https://doi.org/10.1101/2020.02.19.950253.
  • 20. Lam, T.T., Shum, M.H., Zhu, H. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature (2020). https://doi.org/10.1038/s41586-020-2169-0.
  • 21. P. Liu, W. Chen, J.-P. Chen, Viral metagenomics revealed sendai virus and coronavirus infection of Malayan Pangolins (Manis javanica). Viruses 11, 979 (2019).
  • 22. Rambaut, A. Preliminary Phylogenetic Analysis of 11 nCoV2019 Genomes, 2020-01-19. Available online: http://virological.org/t/preliminary-phylogenetic-analysis-of-11-ncov2019-genomes-2020-01-19/329 (accessed on 30 January 2020.
  • 23. Dudas G, Carvalho LM, Rambaut A, et al. Correction: MERS-CoV spillover at the camel-human interface. Elife. 2018 Apr 19;7. pii: e37324. doi: 10.7554/eLife.37324.
  • 24. Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 . Nature. 2013 Nov 28;503(7477):535-8. doi: 10.1038/nature12711. Epub 2013 Oct 30.
  • 25. Menachery VD, Yount BL Jr, Sims AC, et al.SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53. doi: 10.1073/pnas.1517719113.
  • 26. Ieva Bagdonaite, Hans H Wandall, Global aspects of viral glycosylation, Glycobiology, Volume 28, Issue 7, July 2018, Pages 443–467.
  • 27. Qiu Y, Zhao YB, Wang Q, et al. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 2020 Mar 18. pii: S1286-4579(20)30049-6. doi: 10.1016/j.micinf.2020.03.003.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Virology
Journal Section Review
Authors

Bahadır Feyzioğlu 0000-0002-0991-2132

Publication Date April 30, 2020
Acceptance Date April 7, 2020
Published in Issue Year 2020

Cite

AMA Feyzioğlu B. SARS-CoV-2 Kökeni. J Biotechnol and Strategic Health Res. April 2020;4:1-9. doi:10.34084/bshr.712379
  • Dergimiz Uluslararası hakemli bir dergi olup TÜRKİYE ATIF DİZİNİ, TürkMedline, CrossREF, ASOS index, Google Scholar, JournalTOCs, Eurasian Scientific Journal Index(ESJI), SOBIAD ve ISIindexing dizinlerinde taranmaktadır. TR Dizin(ULAKBİM), SCOPUS, DOAJ için başvurularımızın sonuçlanması beklenmektedir.