Review
BibTex RIS Cite

Microbiota and Neurodegeneration

Year 2017, - Mikrobiyota, 115 - 122, 15.11.2017

Abstract

Human gut contains microorganisms such as bacteria, fungi, parasites and viruses; and microbiota refers to all of the special species that live with people. For many unhealthy microbiota; which may develop as a result of internal and external factors; the term ‘’dysbiosis’’ is used. The brain and gut may be connected with various ways including the metabolic processes of the enteric nervous system (ENS), the vagus nerve, the immune system, or the intestinal microorganisms. In the case of dysbiosis; the changes developing in these tracts may contribute to the development of many neurological diseases such as neurodegeneration, Alzheimer’s disease (AD), Parkinson’s disease (PD). Clarifying the relationship between gut-brain axis and neurodegeneration is crucial for development of treatment strategies such as prebiotics, probiotics and diet interventions and fecal transplantation.

References

  • 1. Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget. 2017 May 10;8(32):53829-53838.
  • 2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial fl ora. Science. 2005; 308:1635–1638.
  • 3. Yılmaz K, Altundiş M. Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Med 2017; 13(1): 9-15.
  • 4. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr 2015; 113: 1–5.
  • 5. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez- Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486:222–227.
  • 6. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505:559–563.
  • 7. O'Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, Woznicki J, Hyland NP, Shanahan F, Quigley EM, Marchesi JR, O'Toole PW, Dinan TG, et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience. 2014; 277:885–901.
  • 8. Yalçın S.S, Kanatlı M.Ç. İntestinal mikrobiyota transplantasyonu; neden, kime, nasıl?. Pamukkale Medical Journal 2015;8(1):148-54.
  • 9. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013;145:946-953.
  • 10. Mandal RS, Saha S, Das S (2015) Metagenomic surveys of gut microbiota. Genom Proteom Bioinform 13:148–158.).
  • 11. Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 45:349–362.).
  • 12. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017 Jun 22.
  • 13. Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit. 2004; 10:RA55–62.
  • 14. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiomebrain- gut axis communication. Adv Exp Med Biol. 2014; 817:115–133.
  • 15. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011; 108:16050–16055.
  • 16. Forsythe P, Bienenstock J. Immunomodulation by commensal and probiotic bacteria. Immunol Invest. 2010; 39:429–448.
  • 17. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015; 18:965–977.).
  • 18. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. gamma- Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012; 113:411–417.
  • 19. hao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008; 132:645–660.
  • 20. Luczynski P, McVey Neufeld K-A, Oriach CS et al (2016) Growing up in a bubble: using germ-free animals to assess the infl uence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 19(8):234–248.
  • 21. Houlden A, Goldrick M, Brough D et al (2016) Brain injury induces specifi c changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20.
  • 22. Catanzaro R, Anzalone MG, Calabrese F et al (2014) The gut microbiota and its correlations with the central nervous system disorders. Panminerva Med 57(3):127–143.
  • 23. Jyothi HJ, Vidyadhara DJ, Mahadevan A et al (2015) Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 36:3321–3333.
  • 24. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor defi cits and neuroinfl ammation in a model of Parkinson’s disease. Cell 167(1469–1480):e12.
  • 25. Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci. 2017 Jul 19;8(7):1438-1447.).
  • 26. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13.
  • 27. Mitsuma T, Odajima H, Momiyama Z et al (2008) Enhancement of gene expression by a peptide p(CHWPR) produced by Bifi dobacterium lactis BB-12. Microbiol Immunol 52:144–155.
  • 28. Zhu X, Raina AK, Lee H-G et al (2004) Oxidative stress sig- nalling in Alzheimer’s disease. Brain Res 1000:32–39.
  • 29. Franceschi C, Campisi J (2014) Chronic infl ammation (infl amm-aging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9.
  • 30. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s Disease. J Alzheimers Dis. 2017;58(1):1-15.
  • 31. Knopman DS. Alzheimer disease: Preclinical Alzheimer disease - the new frontier.Nat Rev Neurol. 2016 Nov;12(11):620-621.
  • 32. Rashad Alkasir, Jing Li, Xudong Li, Miao Jin, and Baoli Zhu. Human gut microbiota: the links with dementia development. Protein Cell. 2017 Feb; 8(2): 90–102.)
  • 33. Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard Et, Taylor CM, Welsh DA, Berthoud HR. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015; 77:607–615.
  • 34. Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, Narvaez A, Honrada R, Ruvalcaba D, McGrath MS. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2009; 206:121–124.
  • 35. Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD). Front Aging Neurosci. 2015; 7:9.
  • 36. Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, Hayreh D, D'Angelo G, Benzinger T, Yoon H, Kim J, Morris JC, Mintun MA, Sheline YI. Serotonin signaling is associated with lower amyloidbeta levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A. 2011; 108:14968–14973.
  • 37. Houser MC, Tansey MG.The gut-brain axis: is intestinal infl ammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis. 2017 Jan 11;3:3.
  • 38. Pereira P.A.B, Aho V.T.E, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson's disease. Parkinsonism and Related Disorders 2017;38:61-7.
  • 39. Rocha, N. P., de Miranda, A. S. & Teixeira, A. L. Insights into Neuroinfl ammation in Parkinson's Disease: From Biomarkers to Anti- Infl ammatory Based Therapies. Biomed. Res. Int. 2015, 628192 (2015).
  • 40. Kelly, L. P. et al. Progression of intestinal permeability changes and alphasynuclein expression in a mouse model of Parkinson's disease. Mov. Disord. 29, 999–1009 (2014).
  • 41. Devos, D. et al. Colonic infl ammation in Parkinson's disease. Neurobiol. Dis. 50, 42–48 (2013).
  • 42. Bu, X. L. et al. The association between infectious burden and Parkinson's dis- ease: a case-control study. Parkinsonism. Relat. Disord. 21, 877–881 (2015).
  • 43. Lindqvist, D. et al. Nonmotor symptoms in patients with Parkinson's disease correlations with infl ammatory cytokines in serum. PLoS ONE 7, e47387 (2012).
  • 44. Lema Tome, C. M. et al. Infl ammation and alpha-synuclein's prion-like behavior in Parkinson's disease--is there a link?. Mol. Neurobiol. 47, 561–574 (2013).
  • 45. Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta. Neuropathol. 128, 805–820 (2014).

Mikrobiyota ve Nörodejenerasyon

Year 2017, - Mikrobiyota, 115 - 122, 15.11.2017

Abstract

İnsan bağırsağı; bakteriler, mantarlar, parazitler ve virüsler gibi çeşitli mikroorganizmaları içerir ve mikrobiyota; insanlarla birlikte yaşayan özel türlerin tamamını ifade eder. Pekçok iç ve dış etken sonucu gelişebilen sağlıksız mikrobiyota için, “disbiyozis” terimi kullanılmaktadır. Beyin ve bağırsak; enterik sinir sistemi (ESS), vagus siniri, immün sistem veya bağırsak mikroorganizma-larının metabolik süreçleri de dahil olmak üzere çeşitli yollarla bağlanabilir. Disbiyozis durumunda, bu yollarda gelişen değişiklikler; nörodejenerasyonun, Alzheimer hastalığı (AH), Parkinson hastalığı (PH) gibi birçok nörolojik hastalığın gelşmine katkıda bulunabilir. Bağırsak-beyin aksı ve nörodejenerasyon arasındaki ilişkinin açıklığa kavuşması; prebiyotikler, probiyotikler ve diyet müdaheleleri, fekal transplantasyon gibi tedavi stratejilerinin geliştirilmesi açısından önem arz etmektedir.

References

  • 1. Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget. 2017 May 10;8(32):53829-53838.
  • 2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial fl ora. Science. 2005; 308:1635–1638.
  • 3. Yılmaz K, Altundiş M. Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Med 2017; 13(1): 9-15.
  • 4. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr 2015; 113: 1–5.
  • 5. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez- Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486:222–227.
  • 6. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505:559–563.
  • 7. O'Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, Woznicki J, Hyland NP, Shanahan F, Quigley EM, Marchesi JR, O'Toole PW, Dinan TG, et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience. 2014; 277:885–901.
  • 8. Yalçın S.S, Kanatlı M.Ç. İntestinal mikrobiyota transplantasyonu; neden, kime, nasıl?. Pamukkale Medical Journal 2015;8(1):148-54.
  • 9. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013;145:946-953.
  • 10. Mandal RS, Saha S, Das S (2015) Metagenomic surveys of gut microbiota. Genom Proteom Bioinform 13:148–158.).
  • 11. Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 45:349–362.).
  • 12. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017 Jun 22.
  • 13. Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit. 2004; 10:RA55–62.
  • 14. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiomebrain- gut axis communication. Adv Exp Med Biol. 2014; 817:115–133.
  • 15. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011; 108:16050–16055.
  • 16. Forsythe P, Bienenstock J. Immunomodulation by commensal and probiotic bacteria. Immunol Invest. 2010; 39:429–448.
  • 17. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015; 18:965–977.).
  • 18. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. gamma- Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012; 113:411–417.
  • 19. hao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008; 132:645–660.
  • 20. Luczynski P, McVey Neufeld K-A, Oriach CS et al (2016) Growing up in a bubble: using germ-free animals to assess the infl uence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 19(8):234–248.
  • 21. Houlden A, Goldrick M, Brough D et al (2016) Brain injury induces specifi c changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20.
  • 22. Catanzaro R, Anzalone MG, Calabrese F et al (2014) The gut microbiota and its correlations with the central nervous system disorders. Panminerva Med 57(3):127–143.
  • 23. Jyothi HJ, Vidyadhara DJ, Mahadevan A et al (2015) Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 36:3321–3333.
  • 24. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor defi cits and neuroinfl ammation in a model of Parkinson’s disease. Cell 167(1469–1480):e12.
  • 25. Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci. 2017 Jul 19;8(7):1438-1447.).
  • 26. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13.
  • 27. Mitsuma T, Odajima H, Momiyama Z et al (2008) Enhancement of gene expression by a peptide p(CHWPR) produced by Bifi dobacterium lactis BB-12. Microbiol Immunol 52:144–155.
  • 28. Zhu X, Raina AK, Lee H-G et al (2004) Oxidative stress sig- nalling in Alzheimer’s disease. Brain Res 1000:32–39.
  • 29. Franceschi C, Campisi J (2014) Chronic infl ammation (infl amm-aging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9.
  • 30. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s Disease. J Alzheimers Dis. 2017;58(1):1-15.
  • 31. Knopman DS. Alzheimer disease: Preclinical Alzheimer disease - the new frontier.Nat Rev Neurol. 2016 Nov;12(11):620-621.
  • 32. Rashad Alkasir, Jing Li, Xudong Li, Miao Jin, and Baoli Zhu. Human gut microbiota: the links with dementia development. Protein Cell. 2017 Feb; 8(2): 90–102.)
  • 33. Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard Et, Taylor CM, Welsh DA, Berthoud HR. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015; 77:607–615.
  • 34. Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, Narvaez A, Honrada R, Ruvalcaba D, McGrath MS. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2009; 206:121–124.
  • 35. Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD). Front Aging Neurosci. 2015; 7:9.
  • 36. Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, Hayreh D, D'Angelo G, Benzinger T, Yoon H, Kim J, Morris JC, Mintun MA, Sheline YI. Serotonin signaling is associated with lower amyloidbeta levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A. 2011; 108:14968–14973.
  • 37. Houser MC, Tansey MG.The gut-brain axis: is intestinal infl ammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis. 2017 Jan 11;3:3.
  • 38. Pereira P.A.B, Aho V.T.E, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson's disease. Parkinsonism and Related Disorders 2017;38:61-7.
  • 39. Rocha, N. P., de Miranda, A. S. & Teixeira, A. L. Insights into Neuroinfl ammation in Parkinson's Disease: From Biomarkers to Anti- Infl ammatory Based Therapies. Biomed. Res. Int. 2015, 628192 (2015).
  • 40. Kelly, L. P. et al. Progression of intestinal permeability changes and alphasynuclein expression in a mouse model of Parkinson's disease. Mov. Disord. 29, 999–1009 (2014).
  • 41. Devos, D. et al. Colonic infl ammation in Parkinson's disease. Neurobiol. Dis. 50, 42–48 (2013).
  • 42. Bu, X. L. et al. The association between infectious burden and Parkinson's dis- ease: a case-control study. Parkinsonism. Relat. Disord. 21, 877–881 (2015).
  • 43. Lindqvist, D. et al. Nonmotor symptoms in patients with Parkinson's disease correlations with infl ammatory cytokines in serum. PLoS ONE 7, e47387 (2012).
  • 44. Lema Tome, C. M. et al. Infl ammation and alpha-synuclein's prion-like behavior in Parkinson's disease--is there a link?. Mol. Neurobiol. 47, 561–574 (2013).
  • 45. Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta. Neuropathol. 128, 805–820 (2014).
There are 45 citations in total.

Details

Subjects Health Care Administration
Journal Section Review
Authors

Aybala Neslihan Alagöz

Publication Date November 15, 2017
Acceptance Date October 30, 2017
Published in Issue Year 2017 - Mikrobiyota

Cite

AMA Alagöz AN. Microbiota and Neurodegeneration. J Biotechnol and Strategic Health Res. November 2017;1:115-122.

Journal of Biotechnology and Strategic Health Research