Review
BibTex RIS Cite

In The Light of Oral Microbiota Research, New Perspective on Oral Health: Review

Year 2018, Volume: 2 Issue: 3, 128 - 137, 21.12.2018

Abstract

Abstract: The aim of this review is to investigate the relationship of oral microbiota with many oral and related diseases, mainly dental caries and periodontitis, and their effects on general health. We shared the results of the studies and the results of the research which are still in the research stage. Specifically, we aimed to introduce and discuss the course of oral microbiota transplantation (OMT) and the process ahead.

Microbiota plays an important role in many metabolic events such as modulation of glucose and lipid homeostasis, satiety regulation, energy and vitamin production, as well as anti-carcinogenic and anti-inflammatory effects. 

The most intense colonization area in the body, which contains hundreds of different bacterial, viral and fungal species after the gastrointestinal tract, is the oral cavity. The diversity in the oral microbiota is shaped by the micro-environmental conditions according to the host's systemic condition, diet, genetic predisposition and the efficacy of antimicrobial agents in saliva. While the microorganisms in the oral microbiota continue their symbiotic relationship with the host, the variation in the proportion of certain species with the potential for pathogenicity in the ecological flora results in some oral and systemic diseases.

In oral medicine, oral microbiota transplantation (OMT) has been hypothetically inspired by fecal microbiota transplantation. Oral microbiota transplantation aims to transfer oral biofilms from a healthy donor to the patient with caries or periodontitis. Ongoing and future studies should provide new information about oral microbiota and how a disbiotic microbiota can be successfully modified with a health-friendly flora.

References

  • 1. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F et al. An estimation of the number of cells in the human body. Annals of human biology. 2013; 40(6): p. 463-471.
  • 2. Pascale A, Marchesi P, Marelli C, Coppola A, Luzi L, Govoni S et al. Microbiota and metabolic diseases. Endocrine. 2018: 1-15.
  • 3. Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol. 2014; 5:427.
  • 4. West CE. Gut microbiota and allergic disease: new findings. Curr Opin Clin Nutr Metab Care. 2014; 17:261–6.
  • 5. Luoto R, Collado MC, Salminen S, Isolauri E. Reshaping the gut microbiota at an early age: functional impact on obesity risk? Ann Nutr Metab. 2013; 63:17–26.
  • 6. Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011; 45:128–32.
  • 7. Ettinger G, MacDonald K, Reid G, Burton JP. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes. 2014; 5(6):719-28.
  • 8. Könönen E. Development of oral bacterial flora in young children. Ann Med. 2000; 32: 107–12.
  • 9. Könönen E. Anaerobes in the upper respiratory tract in infancy. Anaerobe. 2005; 11:131–6.
  • 10. Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5:e177.
  • 11. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome biology. 2012;13(6):R42.
  • 12. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial con- sortia in the developing infant gut microbiome. Proc Natl Acad Sci. 2011; 108: 4578–85.
  • 13. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Archives of microbiology. 2018: 1-16.
  • 14. Avila M, Ojcius DM, Yilmaz Ö. The oral microbiota: living with a permanent guest. DNA and cell biology. 2009. 28(8): 405-11.
  • 15. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H et al. The human oral microbiome. Journal of bacteriology. 2010; 192(19): 5002-17.
  • 16. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends in microbiology. 2005;13(12): 589-95.
  • 17. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Da- tabase: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. 2010; 2010.
  • 18. Teles R, Teles F, Frias-Lopez J, Paster B, Haffajee A. Lessons learned and unlearned in periodontal microbiology. Periodontology 2000. 2013;62(1): 95-162.
  • 19. Paster BJ, Dewhirst FE. Molecular microbial diagnosis. Periodontology 2000 2009; 51(1): 38-44.
  • 20. Wade WG. The oral microbiome in health and disease. Pharmacological research. 2013; 69(1): 137-43.
  • 21. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. The Lancet. 2005; 366(9499): 1809-20.
  • 22. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. Journal of dental research. 2011;90(3): 294-303.
  • 23. Nascimento MM. Oral microbiota transplant: a potential new therapy for oral diseases. Journal of the California Dental Association. 2017;45(10): 565.
  • 24. Sultan AS, Kong EF, Rizk AM, Jabra-Rizk MA. The oral microbiome: A Lesson in coexistence. PLoS pathogens. 2018;14(1): e1006719.
  • 25. Marsh PD, Do Thuy, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontology 2000. 2016;70(1): 80-92.
  • 26. Hannig C, Hannig M, Attin T. Enzymes in the acquired enamel pellicle. European journal of oral sciences. 2005;113(1): 2-13.
  • 27. Ambatipudi KS, Lu B, Hagen FK, Melvin JE, Yates JR. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. Journal of proteome research. 2009;8(11): 5093-5102.
  • 28. Preza D, Thiede B, Olsen I, Grinde B. The proteome of the human parotid gland secretion in elderly with and without root caries. Acta odontologica Scandinavica. 2009; 67(3): 161-69.
  • 29. Bradshaw DJ, Marsh PD. Analysis of pH–driven disruption of oral microbial communities in vitro. Caries research. 1998;32(6): 456-62.
  • 30. Head DA, Marsh PD, Devine DA. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque. PloS one. 2014; 9(8): e105012.
  • 31. Marsh PD, Head DA, Devine DA. Prospects of oral disease control in the future–an opinion. Journal of oral microbiology. 2014;6(1): 26176.
  • 32. Kim JK, Baker LA, Davarian S, Crimmins E. Oral health problems and mortality. Journal of dental sciences. 2013;8(2): 115-20.
  • 33. Marsh PD. Dental plaque as a biofilm and a microbial community–implications for health and disease. In BMC Oral health. 2006; 6(1): S14 BioMed Central.
  • 34. Takahashi N. Oral microbiome metabolism: from “who are they?” to “what are they doing?” Journal of dental research. 2015;94(12): 1628-37.
  • 35. Nascimento MM, Zaura E, Takahashi N, ten Cate JM. Second era of OMICS in caries research: moving past the phase of disillusionment. Journal of dental Research. 2017; 96(7): 733-40.
  • 36. Orland FJ, Blayney JR, Harrison RW, Reyniers JA, Trexler PC, Wagner M, et. al. Use of the germfree animal technic in the study of experimental dental caries. I. Basic observations on rats reared free of all microorganisms. J Dent Res. 1954; 33:147–74.
  • 37. Banas JA, Drake DR. Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries?. BMC oral health. 2018; 18(1):129.
  • 38. Jiang W, Jiang Y, Li C, Liang J. Investigation of supragingival plaque microbiota in different caries sta- tus of Chinese preschool children by denaturing gradient gel electrophoresis. Microb Ecol. 2011; 61: 342–52.
  • 39. Kanasi E, Dewhirst FE, Chalmers NI, Kent R Jr, Moore A, Hughes CV, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010; 44:485–97.
  • 40. de Soet JJ, Nyvad B, Kilian M. Strain-related acid production by oral streptococci. Caries Res. 2000; 34:486–90.
  • 41. Mantzourani M, Gilbert SC, Sulong HN, Sheehy EC, Tank S, Fenlon M, et al. The isolation of bifidobacteria from occlusal carious lesions in children and adults. Caries Res. 2009; 43:308–13.
  • 42. Tanner AC, Kent RL Jr, Holgerson PL, Hughes CV, Loo CY, Kanasi E, et al. Microbiota of severe early childhood caries before and after therapy. J Dent Res. 2011; 90:1298–1305.
  • 43. Simon-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015; 23:76–82.
  • 44. Belstrøm D, Holmstrup P, Fiehn N-E, Kirkby N, Kokaras A, Paster BJ, et al. Salivary microbiota in individuals with different levels of caries experience. Journal of oral microbiology. 2017; 9(1):1270614.
  • 45. Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus Mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012; 7: e47722
  • 46. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011; 10:497–506.
  • 47. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012; 10:717–25.
  • 48. Darveau RP, Hajishengallis G, Curtis MA. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res. 2012;91:816–20.
  • 49. Asikainen S, Chen C, Slots J. Likelihood of transmitting Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in families with periodontitis. Oral Microbiol Immunol. 1996; 11:387–94.
  • 50. Asikainen S, Chen C, Alauusua A, Slots J. Can one acquire periodontopathic bacteria and periodontitis from a spouse or a parent? JADA. 1997; 128:1263–71.
  • 51. Asikainen S, Chen C. Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontology. 1999; 20:65–81.
  • 52. Uriarte SM, Edmisson JS, Jimenez-Flores E. Human neutrophils and oral microbiota: a constant tug‐of‐war between a harmonious and a discordant coexistence. Immunological reviews. 2016; 273(1): 282-98.
  • 53. Zenobia C, Luo XL, Hashim A, Abe T, Jin L, Chag Y, et al. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis. Cell Microbiol. 2013; 15:1419–26.
  • 54. Greer A, Irie K, Hashim A, Leroux BG, Chang AM, Curtis MA, et al. Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J Dent Res. 2016; 95(8): 946-52.
  • 55. Nussbaum G, Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol. 2011; 38: 49–59.
  • 56. Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J Dent Res. 2014; 93:231–37.
  • 57. Kumar PS. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease. J. Physiol. 2017; 595(2):465-76.
  • 58. Müller T, Palluch R, Ackowski JJ. Caries and periodontal disease in patients with Parkinson's disease, Spec. Care Dent. 2011; 31(5):178-81.
  • 59. Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson's disease. Parkinsonism & related disorder. 2017; 38: 61-7.
  • 60. Hyvärinen K, Mäntylä P, Buhlin K, Paju S, Nieminen MS, Sinisalo J, et al. A common periodontal pathogen has an adverse association with both acute and stable coronary artery disease. Atherosclerosis. 2012; 223(2):478-84.
  • 61. Fåk F, Tremaroli V, Bergsröm G, Bäackhed F. Oral microbiota in patients with atherosclerosis. Atherosclerosis. 2015; 243(2): 573-78.
  • 62. Olson SH, Satagopan J, Xu MS, Ling L, Leong S, Orlow I, et al. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes & Control. 2017; 28(9):959-69.
  • 63. Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018; 67(8):1454-63.
  • 64. Kato I, Vasquez A, Moyerbrailean G, Land S, Djuric Z, Sun J, et al. Nutritional correlates of human oral microbiome. Journal of the American College of Nutrition. 2017; 36(2):88-98.
  • 65. Tezal M, Sullivan MA, Hyland A, Marshall JR, Stoler D, Reid ME, et al. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer epidemiology and prevention biomarkers. 2009; 18(9): 2406–12.
  • 66. Hooper SJ, Wilson MJ, Crean SJ. Exploring the link between microorganisms and oral cancer: a systematic review of the literature. Head Neck. 2009; 31: 1228–39.
  • 67. Nagy KN, Sonkodi I, Szoke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral oncology. 1998; 34: 304–308.
  • 68. Hooper SJ, Crean SJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ. Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol. 2006; 44: 1719–25.
  • 69. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC microbiology. 2012; 12(1): 144.
  • 70. Bebek G, Bennett KL, Funchain P, Campbell R, Seth R, Scharpf J, et al. Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma. Human molecular genetics. 2011; 21: 1557–65.
  • 71. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz ELS, et al. Changes in abundance of oral microbiota associated with oral cancer. PloS one. 2014; 9(6): e98741.
  • 72. Yang C-Y, Yeh Y-M, Yu H-Y, Chin C-Y, Hsu C-W, Liu H, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Frontiers in microbiology. 2018; 9.
  • 73. Lee W-H, Chen H-M, Yang S-F, Liang C, Peng C-Y, Lin F-M, et al, Bacterial alterations in salivary microbiota and their association in oral cancer. Scientific reports, 2017; 7(1):16540.
  • 74. Zhao H, Chu M, Huang Z, Yang X, Ran S, Hu B, et al. Variations in oral microbiota associated with oral cancer. Scientific reports. 2017; 7(1):11773.
  • 75. Mok SF, Karuthan C, Cheah YK, Ngeow WC, Rosnah BZ, Yap SF, et al. The oral microbiome community variations associated with normal, potentially malignant disorders and malignant lesions of the oral cavity. Malaysian Journal of Pathology. 2017; 39(1): 1-15.
  • 76. Al Kawas S, Rahim ZHA, Ferguson DB. Potential uses of human salivary protein and peptide analysis in the diagnosis of disease. Archives of oral biology. 2012;57(1): 1-9.
  • 77. Cuevas-Córdoba B, Santiago-Garcia J. Saliva: a fluid of study for OMICS. Omics: a journal of integrative biology. 2014;18(2): 87-97.
  • 78. Proctor LM. The national institutes of health human microbiome project. In Seminars in Fetal and Neonatal Medicine. 2016; Elsevier.
  • 79. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164): 804.
  • 80. Mira A, Simon‐Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. Journal of clinical periodontology. 2017;44: S23-S38.
  • 81. Pozhitkov AE, Leroux BG, Randolph TW, Beikler T, Flemmig TF, Noble PA. Towards microbiome transplant as a therapy for periodontitis: an exploratory study of periodontitis microbial signature contrasted by oral health, caries and edentulism. BMC Oral Health. 2015;15(1): 125.
  • 82. Sampaio-Maia B, Monteiro-Silva F. Acquisition and maturation of oral microbiome throughout childhood: an update. Dental research journal. 2014;11(3): 291.
  • 83. Virtanen JI, Vehkalahti KI, Vehkalahti MM. Oral health behaviors and bacterial transmission from mother to child: an explorative study. BMC oral health. 2015; 15(1): 75.
  • 84. Isolauri E. Development of healthy gut microbiota early in life. J Paediatr Child Health. 2012; 48: 1-6.
  • 85. Munyaka PM, Khafipour E, Ghia JE. External influence of early childhood establishment of gut micro- biota and subsequent health implications. Front Pediatr. 2014; 2:109.
  • 86. Meurman JH. Probiotics: do they have a role in oral medicine and dentistry? European journal of oral sciences. 2005; 113(3): p. 188-96.
  • 87. Buchmann R, Conrads G, Sculean A. Short-term effects of systemic antibiotics during periodontal healing. Quintessence international. 2010;41(4).

Oral Mikrobiyota Araştırmaları Işığında Ağız Sağlığına Yeni Bakış Açısı: Derleme

Year 2018, Volume: 2 Issue: 3, 128 - 137, 21.12.2018

Abstract

Özet: Bu derlemenin amacı, oral mikrobiyotanın, başta diş çürüğü ve periodontitis olmak üzere, birçok ağız içi ve ilişkili hastalıklarla ilişkisini ve bunların genel sağlık üzerine etkilerini araştırmaktır. Konuyla ile ilgili bugüne değin yapılan ve halen araştırma aşamasında olan çalışmaları ve sonuçlarını paylaştık. Spesifik olarak, oral mikrobiyota transplantasyonu (OMT)’nun kat ettiği yol ve önündeki süreci tanıtmayı ve tartışmayı amaçladık.          

 Mikrobiyota, glikoz ve lipit homeostazisinin modülasyonu, tokluk regülasyonu, enerji ve vitamin üretimi gibi birçok metabolik olayda önemli bir rol oynamasının yanında anti-karsinojenik ve anti-inflamatuar etkilere de sahiptir. Gastrointestinal sistemden sonra yüzlerce farklı bakteriyel, viral ve fungal türü barındıran, vücuttaki en yoğun kolonizasyon alanı ağız boşluğudur. Oral mikrobiyotadaki çeşitlilik, konakçının sistemik durumu, diyeti, genetik yatkınlığı ve tükürükteki antimikrobiyal ajanlarının etkinliğine göre, mikro-çevresel koşullar tarafından şekillendirilir. Oral mikrobiyotadaki mikroorganizmalar, konakçı ile simbiyotik ilişkilerini sürdürürken, ekolojik floradaki patojenite potansiyeli olan belirli türlerin oranlarındaki değişim, bazı ağız ve sistemik hastalıklarla sonuçlanmaktadır.

Tıpta fekal mikrobiyota transplantasyondan esinlenerek, oral mikrobiyota transplantasyonu (OMT) hipotetik olarak önerilmiştir. Oral mikrobiyota transplantasyonu, sağlıklı bir donördeki oral biyofilmleri çürük ya da periodontitisli hastaya aktarmayı amaçlamaktadır. Devam eden ve gelecekteki çalışmalar, oral mikrobiyota konusunda ve disbiyotik bir mikrobiyotanın, sağlık açısından yararlı bir flora ile nasıl başarılı bir şekilde değiştirilebileceğine dair yeni bilgiler sunmalıdır.




References

  • 1. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F et al. An estimation of the number of cells in the human body. Annals of human biology. 2013; 40(6): p. 463-471.
  • 2. Pascale A, Marchesi P, Marelli C, Coppola A, Luzi L, Govoni S et al. Microbiota and metabolic diseases. Endocrine. 2018: 1-15.
  • 3. Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol. 2014; 5:427.
  • 4. West CE. Gut microbiota and allergic disease: new findings. Curr Opin Clin Nutr Metab Care. 2014; 17:261–6.
  • 5. Luoto R, Collado MC, Salminen S, Isolauri E. Reshaping the gut microbiota at an early age: functional impact on obesity risk? Ann Nutr Metab. 2013; 63:17–26.
  • 6. Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011; 45:128–32.
  • 7. Ettinger G, MacDonald K, Reid G, Burton JP. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes. 2014; 5(6):719-28.
  • 8. Könönen E. Development of oral bacterial flora in young children. Ann Med. 2000; 32: 107–12.
  • 9. Könönen E. Anaerobes in the upper respiratory tract in infancy. Anaerobe. 2005; 11:131–6.
  • 10. Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5:e177.
  • 11. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome biology. 2012;13(6):R42.
  • 12. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial con- sortia in the developing infant gut microbiome. Proc Natl Acad Sci. 2011; 108: 4578–85.
  • 13. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Archives of microbiology. 2018: 1-16.
  • 14. Avila M, Ojcius DM, Yilmaz Ö. The oral microbiota: living with a permanent guest. DNA and cell biology. 2009. 28(8): 405-11.
  • 15. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H et al. The human oral microbiome. Journal of bacteriology. 2010; 192(19): 5002-17.
  • 16. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends in microbiology. 2005;13(12): 589-95.
  • 17. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Da- tabase: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. 2010; 2010.
  • 18. Teles R, Teles F, Frias-Lopez J, Paster B, Haffajee A. Lessons learned and unlearned in periodontal microbiology. Periodontology 2000. 2013;62(1): 95-162.
  • 19. Paster BJ, Dewhirst FE. Molecular microbial diagnosis. Periodontology 2000 2009; 51(1): 38-44.
  • 20. Wade WG. The oral microbiome in health and disease. Pharmacological research. 2013; 69(1): 137-43.
  • 21. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. The Lancet. 2005; 366(9499): 1809-20.
  • 22. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. Journal of dental research. 2011;90(3): 294-303.
  • 23. Nascimento MM. Oral microbiota transplant: a potential new therapy for oral diseases. Journal of the California Dental Association. 2017;45(10): 565.
  • 24. Sultan AS, Kong EF, Rizk AM, Jabra-Rizk MA. The oral microbiome: A Lesson in coexistence. PLoS pathogens. 2018;14(1): e1006719.
  • 25. Marsh PD, Do Thuy, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontology 2000. 2016;70(1): 80-92.
  • 26. Hannig C, Hannig M, Attin T. Enzymes in the acquired enamel pellicle. European journal of oral sciences. 2005;113(1): 2-13.
  • 27. Ambatipudi KS, Lu B, Hagen FK, Melvin JE, Yates JR. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. Journal of proteome research. 2009;8(11): 5093-5102.
  • 28. Preza D, Thiede B, Olsen I, Grinde B. The proteome of the human parotid gland secretion in elderly with and without root caries. Acta odontologica Scandinavica. 2009; 67(3): 161-69.
  • 29. Bradshaw DJ, Marsh PD. Analysis of pH–driven disruption of oral microbial communities in vitro. Caries research. 1998;32(6): 456-62.
  • 30. Head DA, Marsh PD, Devine DA. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque. PloS one. 2014; 9(8): e105012.
  • 31. Marsh PD, Head DA, Devine DA. Prospects of oral disease control in the future–an opinion. Journal of oral microbiology. 2014;6(1): 26176.
  • 32. Kim JK, Baker LA, Davarian S, Crimmins E. Oral health problems and mortality. Journal of dental sciences. 2013;8(2): 115-20.
  • 33. Marsh PD. Dental plaque as a biofilm and a microbial community–implications for health and disease. In BMC Oral health. 2006; 6(1): S14 BioMed Central.
  • 34. Takahashi N. Oral microbiome metabolism: from “who are they?” to “what are they doing?” Journal of dental research. 2015;94(12): 1628-37.
  • 35. Nascimento MM, Zaura E, Takahashi N, ten Cate JM. Second era of OMICS in caries research: moving past the phase of disillusionment. Journal of dental Research. 2017; 96(7): 733-40.
  • 36. Orland FJ, Blayney JR, Harrison RW, Reyniers JA, Trexler PC, Wagner M, et. al. Use of the germfree animal technic in the study of experimental dental caries. I. Basic observations on rats reared free of all microorganisms. J Dent Res. 1954; 33:147–74.
  • 37. Banas JA, Drake DR. Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries?. BMC oral health. 2018; 18(1):129.
  • 38. Jiang W, Jiang Y, Li C, Liang J. Investigation of supragingival plaque microbiota in different caries sta- tus of Chinese preschool children by denaturing gradient gel electrophoresis. Microb Ecol. 2011; 61: 342–52.
  • 39. Kanasi E, Dewhirst FE, Chalmers NI, Kent R Jr, Moore A, Hughes CV, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010; 44:485–97.
  • 40. de Soet JJ, Nyvad B, Kilian M. Strain-related acid production by oral streptococci. Caries Res. 2000; 34:486–90.
  • 41. Mantzourani M, Gilbert SC, Sulong HN, Sheehy EC, Tank S, Fenlon M, et al. The isolation of bifidobacteria from occlusal carious lesions in children and adults. Caries Res. 2009; 43:308–13.
  • 42. Tanner AC, Kent RL Jr, Holgerson PL, Hughes CV, Loo CY, Kanasi E, et al. Microbiota of severe early childhood caries before and after therapy. J Dent Res. 2011; 90:1298–1305.
  • 43. Simon-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015; 23:76–82.
  • 44. Belstrøm D, Holmstrup P, Fiehn N-E, Kirkby N, Kokaras A, Paster BJ, et al. Salivary microbiota in individuals with different levels of caries experience. Journal of oral microbiology. 2017; 9(1):1270614.
  • 45. Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus Mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012; 7: e47722
  • 46. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011; 10:497–506.
  • 47. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012; 10:717–25.
  • 48. Darveau RP, Hajishengallis G, Curtis MA. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res. 2012;91:816–20.
  • 49. Asikainen S, Chen C, Slots J. Likelihood of transmitting Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in families with periodontitis. Oral Microbiol Immunol. 1996; 11:387–94.
  • 50. Asikainen S, Chen C, Alauusua A, Slots J. Can one acquire periodontopathic bacteria and periodontitis from a spouse or a parent? JADA. 1997; 128:1263–71.
  • 51. Asikainen S, Chen C. Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontology. 1999; 20:65–81.
  • 52. Uriarte SM, Edmisson JS, Jimenez-Flores E. Human neutrophils and oral microbiota: a constant tug‐of‐war between a harmonious and a discordant coexistence. Immunological reviews. 2016; 273(1): 282-98.
  • 53. Zenobia C, Luo XL, Hashim A, Abe T, Jin L, Chag Y, et al. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis. Cell Microbiol. 2013; 15:1419–26.
  • 54. Greer A, Irie K, Hashim A, Leroux BG, Chang AM, Curtis MA, et al. Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J Dent Res. 2016; 95(8): 946-52.
  • 55. Nussbaum G, Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol. 2011; 38: 49–59.
  • 56. Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J Dent Res. 2014; 93:231–37.
  • 57. Kumar PS. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease. J. Physiol. 2017; 595(2):465-76.
  • 58. Müller T, Palluch R, Ackowski JJ. Caries and periodontal disease in patients with Parkinson's disease, Spec. Care Dent. 2011; 31(5):178-81.
  • 59. Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson's disease. Parkinsonism & related disorder. 2017; 38: 61-7.
  • 60. Hyvärinen K, Mäntylä P, Buhlin K, Paju S, Nieminen MS, Sinisalo J, et al. A common periodontal pathogen has an adverse association with both acute and stable coronary artery disease. Atherosclerosis. 2012; 223(2):478-84.
  • 61. Fåk F, Tremaroli V, Bergsröm G, Bäackhed F. Oral microbiota in patients with atherosclerosis. Atherosclerosis. 2015; 243(2): 573-78.
  • 62. Olson SH, Satagopan J, Xu MS, Ling L, Leong S, Orlow I, et al. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes & Control. 2017; 28(9):959-69.
  • 63. Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018; 67(8):1454-63.
  • 64. Kato I, Vasquez A, Moyerbrailean G, Land S, Djuric Z, Sun J, et al. Nutritional correlates of human oral microbiome. Journal of the American College of Nutrition. 2017; 36(2):88-98.
  • 65. Tezal M, Sullivan MA, Hyland A, Marshall JR, Stoler D, Reid ME, et al. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer epidemiology and prevention biomarkers. 2009; 18(9): 2406–12.
  • 66. Hooper SJ, Wilson MJ, Crean SJ. Exploring the link between microorganisms and oral cancer: a systematic review of the literature. Head Neck. 2009; 31: 1228–39.
  • 67. Nagy KN, Sonkodi I, Szoke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral oncology. 1998; 34: 304–308.
  • 68. Hooper SJ, Crean SJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ. Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol. 2006; 44: 1719–25.
  • 69. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC microbiology. 2012; 12(1): 144.
  • 70. Bebek G, Bennett KL, Funchain P, Campbell R, Seth R, Scharpf J, et al. Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma. Human molecular genetics. 2011; 21: 1557–65.
  • 71. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz ELS, et al. Changes in abundance of oral microbiota associated with oral cancer. PloS one. 2014; 9(6): e98741.
  • 72. Yang C-Y, Yeh Y-M, Yu H-Y, Chin C-Y, Hsu C-W, Liu H, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Frontiers in microbiology. 2018; 9.
  • 73. Lee W-H, Chen H-M, Yang S-F, Liang C, Peng C-Y, Lin F-M, et al, Bacterial alterations in salivary microbiota and their association in oral cancer. Scientific reports, 2017; 7(1):16540.
  • 74. Zhao H, Chu M, Huang Z, Yang X, Ran S, Hu B, et al. Variations in oral microbiota associated with oral cancer. Scientific reports. 2017; 7(1):11773.
  • 75. Mok SF, Karuthan C, Cheah YK, Ngeow WC, Rosnah BZ, Yap SF, et al. The oral microbiome community variations associated with normal, potentially malignant disorders and malignant lesions of the oral cavity. Malaysian Journal of Pathology. 2017; 39(1): 1-15.
  • 76. Al Kawas S, Rahim ZHA, Ferguson DB. Potential uses of human salivary protein and peptide analysis in the diagnosis of disease. Archives of oral biology. 2012;57(1): 1-9.
  • 77. Cuevas-Córdoba B, Santiago-Garcia J. Saliva: a fluid of study for OMICS. Omics: a journal of integrative biology. 2014;18(2): 87-97.
  • 78. Proctor LM. The national institutes of health human microbiome project. In Seminars in Fetal and Neonatal Medicine. 2016; Elsevier.
  • 79. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164): 804.
  • 80. Mira A, Simon‐Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. Journal of clinical periodontology. 2017;44: S23-S38.
  • 81. Pozhitkov AE, Leroux BG, Randolph TW, Beikler T, Flemmig TF, Noble PA. Towards microbiome transplant as a therapy for periodontitis: an exploratory study of periodontitis microbial signature contrasted by oral health, caries and edentulism. BMC Oral Health. 2015;15(1): 125.
  • 82. Sampaio-Maia B, Monteiro-Silva F. Acquisition and maturation of oral microbiome throughout childhood: an update. Dental research journal. 2014;11(3): 291.
  • 83. Virtanen JI, Vehkalahti KI, Vehkalahti MM. Oral health behaviors and bacterial transmission from mother to child: an explorative study. BMC oral health. 2015; 15(1): 75.
  • 84. Isolauri E. Development of healthy gut microbiota early in life. J Paediatr Child Health. 2012; 48: 1-6.
  • 85. Munyaka PM, Khafipour E, Ghia JE. External influence of early childhood establishment of gut micro- biota and subsequent health implications. Front Pediatr. 2014; 2:109.
  • 86. Meurman JH. Probiotics: do they have a role in oral medicine and dentistry? European journal of oral sciences. 2005; 113(3): p. 188-96.
  • 87. Buchmann R, Conrads G, Sculean A. Short-term effects of systemic antibiotics during periodontal healing. Quintessence international. 2010;41(4).
There are 87 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review
Authors

Umut Pamukçu 0000-0001-8356-8344

Fatma Nur Yıldız 0000-0002-9467-5572

Tuba Dal

İlkay Peker 0000-0002-2888-2979

Publication Date December 21, 2018
Acceptance Date November 24, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

AMA Pamukçu U, Yıldız FN, Dal T, Peker İ. Oral Mikrobiyota Araştırmaları Işığında Ağız Sağlığına Yeni Bakış Açısı: Derleme. J Biotechnol and Strategic Health Res. December 2018;2(3):128-137.

Journal of Biotechnology and Strategic Health Research