Review
BibTex RIS Cite

The Role of Antimicrobial Peptides in the Diagnosis of Sepsis

Year 2019, Volume: 3 Issue: 1, 1 - 7, 30.04.2019
https://doi.org/10.34084/bshr.535317

Abstract

Sepsis is the most common cause of death in patients in intensive care
units outside the coronary intensive care unit. Early diagnosis and treatment
are the most important determinant of prognosis in a positive way, and
biomarkers that are developed for the early diagnosis of sepsis are therefore
of paramount importance to make necessary interventions and thus reduce
mortality. Systemic inflammatory response syndrome (SIRS) criteria, which have
been used for many years in the diagnosis of sepsis, have been found to be
non-specific for the diagnosis of sepsis and SOFA score indicating organ
dysfunction was found to be more useful in diagnosis. But this score, which
contains many parameters, cannot facilitate diagnosis because of its long list.
Nowadays, rapid and diagnostic tests are needed for the early diagnosis of
sepsis. Biomarkers have become a focus of interest in the early diagnosis of
sepsis because of their rapid results. In this context, antimicrobial peptides
(AMP), which have been studied in recent years on biomarker properties, may be
candidate tests in the diagnosis of sepsis. Antimicrobial peptides are
important components of natural immunity that can be synthesized by many
organisms from bacteria to mammals. These peptides, with broad spectrum
microbiocidal activity against viruses, fungi, bacteria and parasites, are
excreted in body fluids and inflammation-induced tissues. Antimicrobial
peptides such as katelicidin, defensin, calprotectin, hepsidine and
lactoferrin, which have been shown to increase synthesis during the sepsis
process, are potential biomarkers for this disease. In this review, mechanisms
of action and biomarker properties of various AMPs in sepsis process are
examined.

References

  • 1. Fleischmann C, Schera A, Neill KJ, Tsaganos H, Schlattmann P, Angus DC, et al. On behalf of the International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Respir Crit Care Med 2016 Vol 193, Iss 3, pp 259–272.
  • 2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016; 315(8), 801-810.
  • 3. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8):775-787.
  • 4. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101:3765.
  • 5. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992; 101(6): 1644-1655.
  • 6. Churpek MM , Zadravecz F J, Winslow C, Howell MD, Edelson DP. Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward 57 patients. American journal of respiratory and critical care medicine 2015; 192(8), 958-964.
  • 7. Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, & Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. New England Journal of Medicine 2015; 372(17), 1629-1638.
  • 8. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference. Intensive care medicine, 2003; 29(4), 530-538.
  • 9. Ayşe Ünal Eşiyok. Sepsis Tanısında Moleküler Yöntemlerin Konvansiyonel Yöntemler İle Karşılaştırılması, Aydın – 2016
  • 10. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36:296-327.
  • 11. Peters RP, van Agtmael MA, Danner SA, Savelkoul PH, Vandenbroucke-Grauls CM. New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 2004;4: 751-60.
  • 12. Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 2010; 23: 235-51.
  • 13. Vincent JL, Moreno R, TakalaJ, WillattsS, Mendona A, BruiningH, Reinhart CK, et al. The SOFA (Sepsis.related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 1996; 22: 707-710.
  • 14. Reinhart K. Diagnosis of sepsis. Novel and conventional parameters. Minerva Anestesiol 2001; 67: 675-82.
  • 15. Mitaka C. Clinical laboratory differentiation of infectious versus non-infectious systemic inflammatory response syndrome. Clin Chim Acta 2005; 351: 17-29.
  • 16. Carrol ED, Thomson AP, Hart CA. Procalcitonin as a marker of sepsis. Int J Antimicrob Agents 2002; 20: 1-9.
  • 17. Carnicelli V, Lizzi AR, Ponzi A, Amicosante G, Bozzi A and Di Giulio A. Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes. In: Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.) FORMATEX 2013, pp. 1123-1134.
  • 18. Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. J Surg Res (1999) 11: 23–7.
  • 19. Brogden KA, Ackermann M, McCray PB, Tack BF. Antimicrobial peptides in animals and their role in host defences. International Journal of Antimicrobial Agents. 2003; 22: 465-478.
  • 20. Martin L, Meegern A, Doemming S, Schuerholz T. Antimicrobial peptides in human sepsis. Frontiers in Immunology Rev. 2015; 00404.
  • 21. Nagaoka I, Hirota S, Niyonsaba F. et al. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J. Immunol. 2001; 167:3329.
  • 22. Rosenfeld Y, Papo N, Shai Y. Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J. Biol. Chem 2006; 281:1636.
  • 23. Landsem A, Fure H, Christiansen D, Nielsen EW, Osterud B, Mollnes TE, Brekke OL: The key roles of complement and tissue factor in Escherichia coli-induced coagulation in human whole blood. Clin Exp Immunol 2015; 182(1): 81–89.
  • 24. Hirata M, Shimomura Y, Yoshida M, Wright SC, Larrick JW. Endotoxin-binding synthetic peptides with endotoxin-neutralizing, antibacterial and anticoagulant activities. Prog Clin Biol Res 1994; 388:147–159.
  • 25. Izadpanah A, Gallo RL. Antimicrobial Peptides. Journal of the American Academy of Dermotology. 2005; 52:381-390.
  • 26. Wang G, Li X, Wang Z. The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res , 2009; 37:D933–D937.
  • 27. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 2004; 22:181–215.
  • 28. Koten B, Becker K, Podschun R, van Eiff C, Meyer-Hoffert U, Harder J, Glaser R. Susceptibility of Staphylococcus aureus bacteremia strains to different skin-derived antimicrobial proteins. Arch Dermatol Res 2012; 304(8): 633–637.
  • 29. Takahashi H, Tsuda Y, Takeuchi D, Kobayashi M, Herndon DN, Suzuki F: Influence of systemic inflammatory response syndrome on host resistance against bacterial infections. Crit Care Med 2004; 32(9):1879–1885.
  • 30. Vandenbroucke RE, Vanlaere I, Van Hauwermeiren F, Van Wonterghem E, Wilson C, Libert C: Pro-inflammatory effects of matrix metall metalloproteinase 7 in acute inflammation. Mucosal Immunol. 2014 May;7(3):579-88.
  • 31. Fagerhol MK, Dale I, Andersson T, “Release and quantitation of a leucocyte derived protein (L1),” Scandinavian Journal of Haematology, 1980; vol. 24, no. 5, pp. 393–398.
  • 32. Zwadlo G, Bruggen J, Gerhards G, Schlegel R, Sorg C, “Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues,” Clinical and Experimental Immunology, 1988; vol. 72, no. 3, pp. 510–515.
  • 33. P C Ng, “Diagnosticmarkers of infection in neonates,” Archives of Disease in Childhood, 2004; vol. 89, no. 3, pp. F229–F235.
  • 34. Nısapakultorn K, Ross Kf, Herzberg Mc. Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect Immun 2001; 69: 3692-3696.
  • 35. Arezes J, Jung G, Gabayan V, Valore E, Ruchala P, Gulig PA, Ganz T, et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 2015; 17: 47-57.
  • 36. Rodriguez R, Jung CL, Gabayan V, Deng JC, Ganz T, Nemeth E, Bulut Y. Hepcidin induction by pathogens and pathogenderived molecules is strongly dependent on interleukin-6. Infect Immun 2014; 82: 745-752.
  • 37. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003; 102: 783- 788.
  • 38. Michels K, Nemeth E, Ganz T, Mehrad B. Hepcidin and host defense against infectious diseases. PLoS Pathog 2015; 11: e1004998.39. Yıldırım Z, Tokatlı M, Öncül N, Yıldırım M. Laktoferrinin Biyolojik Aktivitesi 2011; 9(6) 52-63.
  • 40. Berkestedt I, Herwald H, Ljunggren L, Nelson A, Bodelsson M. Elevated Plasma Levels of Antimicrobial Polypeptides in Patients with Severe Sepsis the Journal of innate immunity 2010; 2: 478–482.
  • 41. Neal JT, Joseph AC, Lesley AD, Howell S, Phıllıp H. Plasma concentrations of defensins and lactoferrin in children with severe sepsis . Pediatr Infect Dis J. Jan 2002; 21(1):34-8.
  • 42. Jeng L, Yamshchikov AV, Judd SE, Blumberg HM, Martin GS, Ziegler TR, Tangpricha V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis Journal of Translational Medicine 2009; 7: 28.
  • 43. Book M, Chen Q, Lehmann LE, Klaschik S, Weber S, Schewe J, et al. Inducibility of the endogenous antibiotic peptide β-defensin 2 is impaired in patients with severe sepsis. Critical Care 2007; 11(1):R19.
  • 44. Terrin G, Passariello A, Manguso F, Salvia G, Rapacciuolo L, Messina F, et al. SerumCalprotectin: An Antimicrobial Peptide as a NewMarker For the Diagnosis of Sepsis in Very Low BirthWeight Newborns Clin Dev Immunol. 2011; 291085.
  • 45. Yeşilbaş O, Şevketoğlu E, Duramaz Bb, Kıhtır Hs, Gedikbaşı A, Petmezci Mt, Baydemir C. Role of hepcidin in the diagnosis of sepsis and septic shock in children Turkish Journal of Medical Sciences 2018; 48: 517-524.
  • 46. Calvano SE, Thompson WA, Marra MN, Coyle SM, de Riesthal HF, Trousdale RK, et al. Changes in polymorphonuclear leukocyte surface and plasm bactericidal/permeability-increasing protein and plasma lipopolysaccharide binding protein during endotoxemia or sepsis. Arch Surg 1994; 129:220–6.
  • 47. Ho J, Zhang L, Liu X, Wong SH, Wang MHT, Lau BWM, Ngai SPC, et al. Pathological role and diagnostic value of endogenous host defense peptides in adult and neonatal sepsis: a systematic review. Shock 2017; 47: 673–679.

Antimikrobiyal Peptidlerin Sepsis Tanısındaki Rolü

Year 2019, Volume: 3 Issue: 1, 1 - 7, 30.04.2019
https://doi.org/10.34084/bshr.535317

Abstract

Sepsis,
koroner yoğun bakım ünitesi dışındaki yoğun bakım ünitelerinde yatan hastalarda
ölümün en sık nedenidir. Erken tanı ve tedavi prognozu olumlu yönde belirleyen
en önemli etmendir ve bu sebeple sepsisin erken tanısı için geliştirilecek olan
biyobelirteçler gerekli müdahalenin yapılması ve böylece mortalitenin azaltılması
yönünde öncelik taşımaktadır. Sepsis tanısında, uzun yıllar boyunca kullanılan
sistemik inflamatuar yanıt sendromu (SIRS) kriterlerinin, günümüzde sepsis
tanısı için spesifik olmadığı anlaşılmış ve tanıda organ disfonksiyonunu
gösteren SOFA skoru daha yararlı bulunmuştur. Fakat birçok parametreyi içeren
bu skor, uzun listesi nedeni ile tanıda kolaylık sağlayamamaktadır. Günümüzde,
sepsis tanısı için hızlı ve tanı koydurucu testlere ihtiyaç duyulmaktadır. Biyobelirteçler,
hızlı sonuç sağlamaları nedeni ile sepsisin erken tanısında ilgi odağı haline
gelmiştir. Bu bağlamda, son yıllarda biyobelirteç özellikleri üzerinde
çalışılan antimikrobiyal peptidler (AMP), sepsisin erken tanısında aday testler
olabilir. AMP’ler, bakterilerden memelilere kadar birçok canlı tarafından sentezlenebilen
doğal bağışıklığın önemli bileşenleridir. Virüs, mantar, bakteri ve parazitlere
karşı oldukça geniş spektrumlu mikrobiyosidal aktiviteye sahip bu peptidler
vücut sıvılarında ve inflamasyonun indüklendiği dokularda eksprese edilir.
Sepsis sürecinde sentezinin arttığı gözlenen katelisidin, defensin,
kalprotektin, hepsidin ve laktoferrin gibi antimikrobiyal peptidler bu hastalık
için potansiyel biyobelirteç özelliği göstermektedir. Bu derlemede, AMP’lerden
olan katelisidin, defensin, kalprotektin, hepsidin, laktoferrin ve bakterisidal
geçirgenlik arttırıcı proteinin (BPI) sepsis sürecindeki etki mekanizmaları ve biyobelirteç
özellikleri irdelenmektedir.

References

  • 1. Fleischmann C, Schera A, Neill KJ, Tsaganos H, Schlattmann P, Angus DC, et al. On behalf of the International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Respir Crit Care Med 2016 Vol 193, Iss 3, pp 259–272.
  • 2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016; 315(8), 801-810.
  • 3. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8):775-787.
  • 4. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101:3765.
  • 5. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992; 101(6): 1644-1655.
  • 6. Churpek MM , Zadravecz F J, Winslow C, Howell MD, Edelson DP. Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward 57 patients. American journal of respiratory and critical care medicine 2015; 192(8), 958-964.
  • 7. Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, & Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. New England Journal of Medicine 2015; 372(17), 1629-1638.
  • 8. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference. Intensive care medicine, 2003; 29(4), 530-538.
  • 9. Ayşe Ünal Eşiyok. Sepsis Tanısında Moleküler Yöntemlerin Konvansiyonel Yöntemler İle Karşılaştırılması, Aydın – 2016
  • 10. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36:296-327.
  • 11. Peters RP, van Agtmael MA, Danner SA, Savelkoul PH, Vandenbroucke-Grauls CM. New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 2004;4: 751-60.
  • 12. Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 2010; 23: 235-51.
  • 13. Vincent JL, Moreno R, TakalaJ, WillattsS, Mendona A, BruiningH, Reinhart CK, et al. The SOFA (Sepsis.related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 1996; 22: 707-710.
  • 14. Reinhart K. Diagnosis of sepsis. Novel and conventional parameters. Minerva Anestesiol 2001; 67: 675-82.
  • 15. Mitaka C. Clinical laboratory differentiation of infectious versus non-infectious systemic inflammatory response syndrome. Clin Chim Acta 2005; 351: 17-29.
  • 16. Carrol ED, Thomson AP, Hart CA. Procalcitonin as a marker of sepsis. Int J Antimicrob Agents 2002; 20: 1-9.
  • 17. Carnicelli V, Lizzi AR, Ponzi A, Amicosante G, Bozzi A and Di Giulio A. Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes. In: Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.) FORMATEX 2013, pp. 1123-1134.
  • 18. Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. J Surg Res (1999) 11: 23–7.
  • 19. Brogden KA, Ackermann M, McCray PB, Tack BF. Antimicrobial peptides in animals and their role in host defences. International Journal of Antimicrobial Agents. 2003; 22: 465-478.
  • 20. Martin L, Meegern A, Doemming S, Schuerholz T. Antimicrobial peptides in human sepsis. Frontiers in Immunology Rev. 2015; 00404.
  • 21. Nagaoka I, Hirota S, Niyonsaba F. et al. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J. Immunol. 2001; 167:3329.
  • 22. Rosenfeld Y, Papo N, Shai Y. Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J. Biol. Chem 2006; 281:1636.
  • 23. Landsem A, Fure H, Christiansen D, Nielsen EW, Osterud B, Mollnes TE, Brekke OL: The key roles of complement and tissue factor in Escherichia coli-induced coagulation in human whole blood. Clin Exp Immunol 2015; 182(1): 81–89.
  • 24. Hirata M, Shimomura Y, Yoshida M, Wright SC, Larrick JW. Endotoxin-binding synthetic peptides with endotoxin-neutralizing, antibacterial and anticoagulant activities. Prog Clin Biol Res 1994; 388:147–159.
  • 25. Izadpanah A, Gallo RL. Antimicrobial Peptides. Journal of the American Academy of Dermotology. 2005; 52:381-390.
  • 26. Wang G, Li X, Wang Z. The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res , 2009; 37:D933–D937.
  • 27. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 2004; 22:181–215.
  • 28. Koten B, Becker K, Podschun R, van Eiff C, Meyer-Hoffert U, Harder J, Glaser R. Susceptibility of Staphylococcus aureus bacteremia strains to different skin-derived antimicrobial proteins. Arch Dermatol Res 2012; 304(8): 633–637.
  • 29. Takahashi H, Tsuda Y, Takeuchi D, Kobayashi M, Herndon DN, Suzuki F: Influence of systemic inflammatory response syndrome on host resistance against bacterial infections. Crit Care Med 2004; 32(9):1879–1885.
  • 30. Vandenbroucke RE, Vanlaere I, Van Hauwermeiren F, Van Wonterghem E, Wilson C, Libert C: Pro-inflammatory effects of matrix metall metalloproteinase 7 in acute inflammation. Mucosal Immunol. 2014 May;7(3):579-88.
  • 31. Fagerhol MK, Dale I, Andersson T, “Release and quantitation of a leucocyte derived protein (L1),” Scandinavian Journal of Haematology, 1980; vol. 24, no. 5, pp. 393–398.
  • 32. Zwadlo G, Bruggen J, Gerhards G, Schlegel R, Sorg C, “Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues,” Clinical and Experimental Immunology, 1988; vol. 72, no. 3, pp. 510–515.
  • 33. P C Ng, “Diagnosticmarkers of infection in neonates,” Archives of Disease in Childhood, 2004; vol. 89, no. 3, pp. F229–F235.
  • 34. Nısapakultorn K, Ross Kf, Herzberg Mc. Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect Immun 2001; 69: 3692-3696.
  • 35. Arezes J, Jung G, Gabayan V, Valore E, Ruchala P, Gulig PA, Ganz T, et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 2015; 17: 47-57.
  • 36. Rodriguez R, Jung CL, Gabayan V, Deng JC, Ganz T, Nemeth E, Bulut Y. Hepcidin induction by pathogens and pathogenderived molecules is strongly dependent on interleukin-6. Infect Immun 2014; 82: 745-752.
  • 37. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003; 102: 783- 788.
  • 38. Michels K, Nemeth E, Ganz T, Mehrad B. Hepcidin and host defense against infectious diseases. PLoS Pathog 2015; 11: e1004998.39. Yıldırım Z, Tokatlı M, Öncül N, Yıldırım M. Laktoferrinin Biyolojik Aktivitesi 2011; 9(6) 52-63.
  • 40. Berkestedt I, Herwald H, Ljunggren L, Nelson A, Bodelsson M. Elevated Plasma Levels of Antimicrobial Polypeptides in Patients with Severe Sepsis the Journal of innate immunity 2010; 2: 478–482.
  • 41. Neal JT, Joseph AC, Lesley AD, Howell S, Phıllıp H. Plasma concentrations of defensins and lactoferrin in children with severe sepsis . Pediatr Infect Dis J. Jan 2002; 21(1):34-8.
  • 42. Jeng L, Yamshchikov AV, Judd SE, Blumberg HM, Martin GS, Ziegler TR, Tangpricha V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis Journal of Translational Medicine 2009; 7: 28.
  • 43. Book M, Chen Q, Lehmann LE, Klaschik S, Weber S, Schewe J, et al. Inducibility of the endogenous antibiotic peptide β-defensin 2 is impaired in patients with severe sepsis. Critical Care 2007; 11(1):R19.
  • 44. Terrin G, Passariello A, Manguso F, Salvia G, Rapacciuolo L, Messina F, et al. SerumCalprotectin: An Antimicrobial Peptide as a NewMarker For the Diagnosis of Sepsis in Very Low BirthWeight Newborns Clin Dev Immunol. 2011; 291085.
  • 45. Yeşilbaş O, Şevketoğlu E, Duramaz Bb, Kıhtır Hs, Gedikbaşı A, Petmezci Mt, Baydemir C. Role of hepcidin in the diagnosis of sepsis and septic shock in children Turkish Journal of Medical Sciences 2018; 48: 517-524.
  • 46. Calvano SE, Thompson WA, Marra MN, Coyle SM, de Riesthal HF, Trousdale RK, et al. Changes in polymorphonuclear leukocyte surface and plasm bactericidal/permeability-increasing protein and plasma lipopolysaccharide binding protein during endotoxemia or sepsis. Arch Surg 1994; 129:220–6.
  • 47. Ho J, Zhang L, Liu X, Wong SH, Wang MHT, Lau BWM, Ngai SPC, et al. Pathological role and diagnostic value of endogenous host defense peptides in adult and neonatal sepsis: a systematic review. Shock 2017; 47: 673–679.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Microbiology
Journal Section Review
Authors

Tuğba Ayhancı 0000-0002-2115-6261

Mustafa Altındiş 0000-0003-0411-9669

Publication Date April 30, 2019
Acceptance Date March 13, 2019
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

AMA Ayhancı T, Altındiş M. Antimikrobiyal Peptidlerin Sepsis Tanısındaki Rolü. J Biotechnol and Strategic Health Res. April 2019;3(1):1-7. doi:10.34084/bshr.535317

Journal of Biotechnology and Strategic Health Research