Review
BibTex RIS Cite

Hedefe Yönelik Kanser İlaç Dizaynında Isı Şok Proteni 90

Year 2019, Volume: 3 Issue: 3, 161 - 169, 31.12.2019
https://doi.org/10.34084/bshr.647101

Abstract

Isı şok proteini
90 (HSP90) korunmuş bir proteindir ve onkogenik proteinlerin katlanması ve
stabilizasyonundan görevlidir. Bundan dolayı HSP90’nın şaperon görevinin
inhibisyonu hedefe spesifik kanser tedavisinde önemli bir terapötik strateji
olmaktadır. Çok sayıda doğal ve sentetik bileşikler klinik öncesi ve klinik
çalışmalarda HSP90 inhibitörü olarak değerlendirilmiştir. Bu çalışmada, HSP90
inhibisyonunun tümörogenezdeki moleküler mekanizmaları ve HSP90
inhibitörlerinin genel özellikleri tartışılacaktır. 

References

  • 1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394-424.2. Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med 2018; 7:3.3. Ozgur A, Tutar Y. Heat Shock Protein 90 Inhibition in Cancer Drug Discovery: From Chemistry to Futural Clinical Applications. Anticancer Agents Med Chem 2016; 16:280-290.4. Gümus M, Ozgur A, Tutar L, et al. Design, Synthesis, and Evaluation of Heat Shock Protein 90 Inhibitors in Human Breast Cancer and Its Metastasis. Curr Pharm Biotechnol 2016; 17:1231-1245.5. Tutar L, Tutar Y. Heat shock proteins; an overview. Curr Pharm Biotechnol 2010; 11:216-222.6. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 200; 10:86-103.7. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 2012; 18: 64-76.8. Wu J, Liu T, Rios Z, et al. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2017; 38:226-256.9. Jego G, Hazoumé A, Seigneuric R, et al. Targeting heat shock proteins in cancer. Cancer Lett 2013; 332:275-285.10. Ozgur A, Tutar Y. Heat Shock Protein 90 Inhibitors in Oncology. Curr Proteomics 2014; 11: 2-16.11. Usmani SZ, Bona R, Li Z. 17 AAG for HSP90 inhibition in cancer--from bench to bedside. Curr Mol Med 2009; 9:654-664.12. Dixit A, Verkhivker GM. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics. PLoS One 2012;7. 10.1371/journal.pone.0037605.13. Kim KW, Lee SJ, Kim WY, et al. How Can We Treat Cancer Disease Not Cancer Cells? Cancer Res Treat 2017; 49:1-9.14. Cree IA. Cancer biology. Methods Mol Biol 2011;731:1-11.15. Mazurek S, Grimm H, Wilker S, et al. Metabolic characteristics of different malignant cancer cell lines. Anticancer Res 1998;18:3275-3282.16. Li YP, Chen JJ, Shen JJ, et al. Synthesis and biological evaluation of geldanamycin analogs against human cancer cells. Cancer Chemother Pharmacol 2015; 75:773-782.17. Hadden MK, Lubbers DJ, Blagg BS. Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr Top Med Chem 2006; 6: 1173-1182.18. Modi S, Stopeck A, Linden H, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 2011; 17:5132-5139.19. Hostein I, Robertson D, DiStefano F, et al. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 2001; 61:4003-4009.20. Georgakis GV1, Li Y, Rassidakis GZ, et al. Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 2006; 12:584-590.21. Al Shaer L, Walsby E, Gilkes A, et al. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol 2008; 141:483-493.22. Usmani SZ, Bona R, Li Z. 17 AAG for HSP90 inhibition in cancer--from bench to bedside. Curr Mol Med 2009; 9:654-664.23. Holzbeierlein JM, Windsperger A, Vielhauer G. Hsp90: a drug target? Curr Oncol Rep 2010; 12:95-101.24. Zagouri F, Sergentanis TN, Chrysikos D, et al. Hsp90 inhibitors in breast cancer: a systematic review. Breast 2013; 22:569-578.25. Hertlein E, Wagner AJ, Jones J, et al. 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 2010; 116:45-53.26. Rao R, Lee P, Fiskus W, et al. Co-treatment with heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and vorinostat: a highly active combination against human mantle cell lymphoma (MCL) cells. Cancer Biol Ther 2009; 8:1273-1280.27. Floris G, Debiec-Rychter M, Wozniak A, et al. The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors. Mol Cancer Ther 2011; 10:1897-1908.28. Fletcher JA, Rubin BP. KIT mutations in GIST. Curr Opin Genet Dev 2007; 17:3-7.29. Lundgren K, Zhang H, Brekken J, et al. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther 2009; 8:921-929.30. De Mattos-Arruda L, Cortes J. Breast cancer and HSP90 inhibitors: is there a role beyond the HER2-positive subtype? Breast 2012; 21:604-607.31. Caldas-Lopes E, Cerchietti L, Ahn JH, et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA 2009; 106:8368-8373.32. Garcia-Carbonero R, Carnero A, Paz-Ares L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 2013; 14:358-369.33. Gallerne C, Prola A, Lemaire C. Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Biochim Biophys Acta 2013;1833:1356-1366.34. Wang Y, Trepel JB, Neckers LM, et al. STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 2010; 11:1466-1476.35. Shimamura T, Perera SA, Foley KP, et al. Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 2012; 18:4973-4985.36. Eccles SA, Massey A, Raynaud FI, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 2008; 68:2850-2860.37. Lee KH, Lee JH, Han SW, et al. Antitumor activity of NVP-AUY922, a novel heat shock protein 90 inhibitor, in human gastric cancer cells is mediated through proteasomal degradation of client proteins. Cancer Sci 2011; 102:1388-1395.38. Stingl L, Stühmer T, Chatterjee M, et al. Novel HSP90 inhibitors, NVP-AUY922 and NVP-BEP800, radiosensitise tumour cells through cell-cycle impairment, increased DNA damage and repair protraction. Br J Cancer 2010; 102:1578-1591.39. Garon EB, Finn RS, Hamidi H, et al. The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth. Mol Cancer Ther 2013; 12:890-900.40. Rajan A, Kelly RJ, Trepel JB, et al. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res 2011; 17:6831-6839.41. Reddy N, Voorhees PM, Houk BE, et al. Phase I trial of the HSP90 inhibitor PF-04929113 (SNX5422) in adult patients with recurrent, refractory hematologic malignancies. Clin Lymphoma Myeloma Leuk 2013; 13:385-391.42. Hao H, Naomoto Y, Bao X, et al. HSP90 and its inhibitors. Oncol Rep 2010; 23:1483-1492.43. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011; 82:1807-1821.44. Yin Z, Henry EC, Gasiewicz TA. (-)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 2009; 48:336-345.45. Johnson JJ, Bailey HH, Mukhtar H. Green tea polyphenols for prostate cancer chemoprevention: a translational perspective. Phytomedicine 2010; 17:3-13.46. Yalcın AS, Yılmaz AM, Altundağ EM, et al. Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. Marmara Pharm J 2017; 21:19-29.47. Pan X, Zhao B, Song Z, et al. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J Pharmacol Sci 2016; 130:85-93.48. Bigelow RL, Cardelli JA. The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 2006; 25:1922-1930.

Heat Shock Protein 90 in Target Spesifıc Cancer Drug Design

Year 2019, Volume: 3 Issue: 3, 161 - 169, 31.12.2019
https://doi.org/10.34084/bshr.647101

Abstract

Heat shock protein 90 (HSP90) is
conserved chaperone protein which is involved in proper folding and
stabilization of oncogenic proteins. Therefore, inhibition
of the chaperone function of HSP90 has been significant therapeutic strategy in
target specific cancer treatment. Numerous natural and synthetic
compounds have been evaluated as potential HSP90 inhibitor in pre-clinical and
clinical studies. In this paper, we will discuss the molecular mechanisms of
HSP90 inhibition in tumorigenesis and the
general properties and structures of the HSP90 inhibitors.

References

  • 1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394-424.2. Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med 2018; 7:3.3. Ozgur A, Tutar Y. Heat Shock Protein 90 Inhibition in Cancer Drug Discovery: From Chemistry to Futural Clinical Applications. Anticancer Agents Med Chem 2016; 16:280-290.4. Gümus M, Ozgur A, Tutar L, et al. Design, Synthesis, and Evaluation of Heat Shock Protein 90 Inhibitors in Human Breast Cancer and Its Metastasis. Curr Pharm Biotechnol 2016; 17:1231-1245.5. Tutar L, Tutar Y. Heat shock proteins; an overview. Curr Pharm Biotechnol 2010; 11:216-222.6. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 200; 10:86-103.7. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 2012; 18: 64-76.8. Wu J, Liu T, Rios Z, et al. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2017; 38:226-256.9. Jego G, Hazoumé A, Seigneuric R, et al. Targeting heat shock proteins in cancer. Cancer Lett 2013; 332:275-285.10. Ozgur A, Tutar Y. Heat Shock Protein 90 Inhibitors in Oncology. Curr Proteomics 2014; 11: 2-16.11. Usmani SZ, Bona R, Li Z. 17 AAG for HSP90 inhibition in cancer--from bench to bedside. Curr Mol Med 2009; 9:654-664.12. Dixit A, Verkhivker GM. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics. PLoS One 2012;7. 10.1371/journal.pone.0037605.13. Kim KW, Lee SJ, Kim WY, et al. How Can We Treat Cancer Disease Not Cancer Cells? Cancer Res Treat 2017; 49:1-9.14. Cree IA. Cancer biology. Methods Mol Biol 2011;731:1-11.15. Mazurek S, Grimm H, Wilker S, et al. Metabolic characteristics of different malignant cancer cell lines. Anticancer Res 1998;18:3275-3282.16. Li YP, Chen JJ, Shen JJ, et al. Synthesis and biological evaluation of geldanamycin analogs against human cancer cells. Cancer Chemother Pharmacol 2015; 75:773-782.17. Hadden MK, Lubbers DJ, Blagg BS. Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr Top Med Chem 2006; 6: 1173-1182.18. Modi S, Stopeck A, Linden H, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 2011; 17:5132-5139.19. Hostein I, Robertson D, DiStefano F, et al. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 2001; 61:4003-4009.20. Georgakis GV1, Li Y, Rassidakis GZ, et al. Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 2006; 12:584-590.21. Al Shaer L, Walsby E, Gilkes A, et al. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol 2008; 141:483-493.22. Usmani SZ, Bona R, Li Z. 17 AAG for HSP90 inhibition in cancer--from bench to bedside. Curr Mol Med 2009; 9:654-664.23. Holzbeierlein JM, Windsperger A, Vielhauer G. Hsp90: a drug target? Curr Oncol Rep 2010; 12:95-101.24. Zagouri F, Sergentanis TN, Chrysikos D, et al. Hsp90 inhibitors in breast cancer: a systematic review. Breast 2013; 22:569-578.25. Hertlein E, Wagner AJ, Jones J, et al. 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 2010; 116:45-53.26. Rao R, Lee P, Fiskus W, et al. Co-treatment with heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and vorinostat: a highly active combination against human mantle cell lymphoma (MCL) cells. Cancer Biol Ther 2009; 8:1273-1280.27. Floris G, Debiec-Rychter M, Wozniak A, et al. The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors. Mol Cancer Ther 2011; 10:1897-1908.28. Fletcher JA, Rubin BP. KIT mutations in GIST. Curr Opin Genet Dev 2007; 17:3-7.29. Lundgren K, Zhang H, Brekken J, et al. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther 2009; 8:921-929.30. De Mattos-Arruda L, Cortes J. Breast cancer and HSP90 inhibitors: is there a role beyond the HER2-positive subtype? Breast 2012; 21:604-607.31. Caldas-Lopes E, Cerchietti L, Ahn JH, et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA 2009; 106:8368-8373.32. Garcia-Carbonero R, Carnero A, Paz-Ares L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 2013; 14:358-369.33. Gallerne C, Prola A, Lemaire C. Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Biochim Biophys Acta 2013;1833:1356-1366.34. Wang Y, Trepel JB, Neckers LM, et al. STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 2010; 11:1466-1476.35. Shimamura T, Perera SA, Foley KP, et al. Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 2012; 18:4973-4985.36. Eccles SA, Massey A, Raynaud FI, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 2008; 68:2850-2860.37. Lee KH, Lee JH, Han SW, et al. Antitumor activity of NVP-AUY922, a novel heat shock protein 90 inhibitor, in human gastric cancer cells is mediated through proteasomal degradation of client proteins. Cancer Sci 2011; 102:1388-1395.38. Stingl L, Stühmer T, Chatterjee M, et al. Novel HSP90 inhibitors, NVP-AUY922 and NVP-BEP800, radiosensitise tumour cells through cell-cycle impairment, increased DNA damage and repair protraction. Br J Cancer 2010; 102:1578-1591.39. Garon EB, Finn RS, Hamidi H, et al. The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth. Mol Cancer Ther 2013; 12:890-900.40. Rajan A, Kelly RJ, Trepel JB, et al. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res 2011; 17:6831-6839.41. Reddy N, Voorhees PM, Houk BE, et al. Phase I trial of the HSP90 inhibitor PF-04929113 (SNX5422) in adult patients with recurrent, refractory hematologic malignancies. Clin Lymphoma Myeloma Leuk 2013; 13:385-391.42. Hao H, Naomoto Y, Bao X, et al. HSP90 and its inhibitors. Oncol Rep 2010; 23:1483-1492.43. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011; 82:1807-1821.44. Yin Z, Henry EC, Gasiewicz TA. (-)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 2009; 48:336-345.45. Johnson JJ, Bailey HH, Mukhtar H. Green tea polyphenols for prostate cancer chemoprevention: a translational perspective. Phytomedicine 2010; 17:3-13.46. Yalcın AS, Yılmaz AM, Altundağ EM, et al. Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. Marmara Pharm J 2017; 21:19-29.47. Pan X, Zhao B, Song Z, et al. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J Pharmacol Sci 2016; 130:85-93.48. Bigelow RL, Cardelli JA. The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 2006; 25:1922-1930.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Review
Authors

Aykut Özgür 0000-0002-4457-1249

İsa Gökçe This is me 0000-0002-5023-9947

Publication Date December 31, 2019
Acceptance Date November 25, 2019
Published in Issue Year 2019 Volume: 3 Issue: 3

Cite

AMA Özgür A, Gökçe İ. Hedefe Yönelik Kanser İlaç Dizaynında Isı Şok Proteni 90. J Biotechnol and Strategic Health Res. December 2019;3(3):161-169. doi:10.34084/bshr.647101

Journal of Biotechnology and Strategic Health Research