Nowadays, world has been shaken by the 2019-nCoV pandemic outbreak started in Wuhan, Hubei Province of China, and spread all over the World. In this study, 2019-nCoV pandemic progress of Turkey was evaluated and growth curve assisted pandemic progress management was explored.
Data released by Minister of Healh of Turkey between 11 March 2020 and 27 April 2020 regarding 2019-nCoV was used to analyse the situation. Gompertz growth curve was suggested to be able to make future prediction taking into account numbers of hospital bed, critical care unit bed, and doctors of Turkey.
In the first 12 days, number of 2019-nCoV cases increased in an exponential phase, but starting from day 13 this dramatic increase ended. The number of total active cases (TAH) was defined as the difference of number of total cases (TV) and number of recovered plus death. Minimum and maximum values of total number of patients in intensive care (TYBH) to number of TAH ratio were found to be 2.22% and 6.80%, respectively. Minimum and maximum values of total number of entubed patients (TEH) to number of TAH ratio were found to be 1.13% and 4.98%, respectively. Both ratios were high in the early days of the pandemic, although both were decreased later on.
Parameter estimation of Gompertz growth curve for the number of TAH was performed. Estimation was made for number of TAH by utilising the estimated parameters,. The estimated number of TAH via Gompertz model was given as an example for future process management. Then, application of the process for number of TEH and TYBH was explained.
2019-nCoV Gompertz groth curve parameter estimation the 2019-nCoV progress in Turkey pandemic progress managemant
Çin Halk Cumhuriyeti’nin Hubei eyaletine bağlı Wuhan şehrinde başlayıp tüm Dünya’ya yayılan 2019-nCoV salgını, Dünya gündemini oluşturmaktadır. Bu çalışmada, ülkemizde 2019-nCoV süreci değerlendirildi ve büyüme modeli destekli salgın süreci yönetimi uygulanabilirliği incelendi.
11 Mart 2020 - 27 Nisan 2020 tarihleri arasında Sağlık Bakanlığı’nın resmi olarak yayınladığı 2019-nCoV verileri kullanılarak salgının ülkemizdeki seyri analiz edildi. Ülkemizin hastane yatağı, yoğun bakım yatağı ve doktor kapasiteleri dikkate alınarak geleceğe dönük tahminler yapalabilmek için Gompertz büyüme modeli önerildi.
İlk 12 günde vaka sayısının katlanarak devam ettiği (üstel faz) görüldü, 13. günde üstel fazdan çıkıldı. Toplam aktif hasta (TAH) sayısı = Toplam vaka (TV) sayısı – toplam iyileşen sayısı – toplam ölüm sayısı olarak tanımlandı. Toplam yoğun bakım hasta (TYBH) sayısı / (TAH) sayısı oranının en düşük ve en yüksek değerleri sırasıyla, %2,22 ve %6,80 olarak gözlendi. Toplam entübe hasta (TEH) sayısı / TAH sayısı oranının en düşük ve en yüksek değerleri sırasıyla, %1,13 ve %4,98 olarak saptandı. Her iki oranın da salgının başlangıç günlerinde yüksek olduğu, ilerleyen günlerde azaldığı görüldü.
Gompertz büyüme modeli ile TAH sayısı için parametre tahmini yapıldı. Elde edilen parametreler ile TAH sayısı tahmini gerçekleştirildi. İleriye dönük projeksiyon süreç yönetimine Gompertz modeli ile tahmin edilen TAH sayısı örnek olarak verildi. TEH ve TYBH sayıları için nasıl uygulanabileceği açıklandı.
2019-nCoV Gompertz büyüme modeli parametre tahmini Türkiye’de 2019-nCoV süreci salgın süreç yönetimi
Primary Language | Turkish |
---|---|
Subjects | Clinical Sciences |
Journal Section | Research Article |
Authors | |
Publication Date | April 30, 2020 |
Acceptance Date | April 30, 2020 |
Published in Issue | Year 2020 COVID-19Special Issue |
Journal of Biotechnology and Strategic Health Research