Review
BibTex RIS Cite

The Relationship Between Intestinal Microbiota and Toll-Like Receptors: Immunity and Metabolism

Year 2021, Volume: 5 Issue: 1, 12 - 21, 30.04.2021
https://doi.org/10.34084/bshr.903730

Abstract

The intestinal tract has developed various strategies that allow a symbiotic relationship with the microbiota and restrict the invasion of microorganisms. Toll-like receptors (TLRs) are expressed in a variety of cell types, including macrophages, dendritic cells (DCs), T lymphocytes, and intestinal epithelial cells. TLRs act as pathogen recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (MAMP) specific to pathogens and essential for their survival. Interactions between intestinal microbiota in humans and TLRs on intestinal epithelial cells and immune cells support the maintenance of the homeostasis of the immune system. TLR-related pathways regulate intrinsic metabolism in immune cells to allocate energy to immune response. Commensal bacteria are recognized as "non-pathogenic" after anti-inflammatory response with TLR2 activation. TLR4 expression is increased in adipose tissue, peripheral blood or muscle tissue samples of obese or type 2 diabetes patients and in adipose tissues of obese mice and is associated with insulin resistance. TLR5-deficient mice have been reported to be prone to developing the metabolic syndrome including insulin resistance and increased adiposity, which is associated with changes in microbiota composition. In addition, the beneficial effects of immunosuppression with the use of TLR antagonists continue to be investigated for metabolic and cardiovascular diseases. The intestinal microbiota changes due to genetics and environmental influences can cause host immune response problems and certain microbiota manipulations and reprogramming of microbiota in patients can offer accessible and promising treatment options. Therefore, it is important to understand how the relationship between the microbiota and the immune system will regulate metabolic parameters which could lead to advances in the treatment of metabolic diseases.

References

  • 1. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115-1118. doi:10.1126/science.1058709
  • 2. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512-519. doi:10.1016/S0140-6736(03)12489-0
  • 3. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159-169. doi:10.1038/nri2710
  • 4. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4659-4665. doi:10.1073/pnas.1006451107
  • 5. Benckert J, Schmolka N, Kreschel C, et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J Clin Invest. 2011;121(5):1946-1955. doi:10.1172/JCI44447
  • 6. Güçlü Durgun S., Determination of gut microbiota fingerprints of healthy families using by culturomics maldi-TOF MS approach, Yüksek lisans tezi, 2019
  • 7. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577-594. doi:10.1053/j.gastro.2007.11.059
  • 8. Deveci Ozkan A, Kaleli S, Onen HI, et al. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. Immunopharmacol Immunotoxicol. 2020;42(2):93-100. doi:10.1080/08923973.2020.1725040
  • 9. Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147(6):1363-77.e17. doi:10.1053/j.gastro.2014.08.033
  • 10. Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59(3):583-594. doi:10.1016/j.jhep.2013.03.033
  • 11. Feingold KR, Moser A, Shigenaga JK, Grunfeld C. Inflammation inhibits the expression of phosphoenolpyruvate carboxykinase in liver and adipose tissue. Innate Immun. 2012;18(2):231-240. doi:10.1177/1753425911398678
  • 12. Cullender TC, Chassaing B, Janzon A, et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe. 2013;14(5):571-581. doi:10.1016/j.chom.2013.10.009
  • 13. Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk!. Annu Rev Physiol. 2012;74:177-198. doi:10.1146/annurev-physiol-020911-153330
  • 14. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A. 1998;95(2):588-593. doi:10.1073/pnas.95.2.588
  • 15. Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995;374(6518):183-186. doi:10.1038/374183a0
  • 16. Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995;374(6518):183-186. doi:10.1038/374183a0
  • 17. Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742-4749. doi:10.1182/blood-2009-10-249540
  • 18. Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323-332. doi:10.1038/ni.2833
  • 19. Rodríguez-Prados JC, Través PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185(1):605-614. doi:10.4049/jimmunol.0901698
  • 20. Sanin DE, Prendergast CT, Mountford AP. IL-10 Production in Macrophages Is Regulated by a TLR-Driven CREB-Mediated Mechanism That Is Linked to Genes Involved in Cell Metabolism. J Immunol. 2015;195(3):1218-1232. doi:10.4049/jimmunol.1500146
  • 21. Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell. 2003;12(4):805-816. doi:10.1016/s1097-2765(03)00384-8
  • 22. Chow EK, Castrillo A, Shahangian A, et al. A role for IRF3-dependent RXRalpha repression in hepatotoxicity associated with viral infections. J Exp Med. 2006;203(12):2589-2602. doi:10.1084/jem.20060929
  • 23. Vaz B, de Lera ÁR. Advances in drug design with RXR modulators. Expert Opin Drug Discov. 2012;7(11):1003-1016. doi:10.1517/17460441.2012.722992
  • 24. Li Q, Pène V, Krishnamurthy S, Cha H, Liang TJ. Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nat Med. 2013;19(6):722-729. doi:10.1038/nm.3190
  • 25. Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269-7272. doi:10.1128/JVI.79.11.7269-7272.2005
  • 26. Huang YL, Morales-Rosado J, Ray J, et al. Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. J Biol Chem. 2014;289(5):3001-3012. doi:10.1074/jbc.M113.524587
  • 27. Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW Jr. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 2013;18(6):816-830. doi:10.1016/j.cmet.2013.11.001
  • 28. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229-241. doi:10.1016/j.cell.2004.07.002
  • 29. Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 2014;15(4):413-423. doi:10.1016/j.chom.2014.03.006
  • 30. Ochoa-Repáraz J, Mielcarz DW, Wang Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487-495. doi:10.1038/mi.2010.29
  • 31. Smelt MJ, de Haan BJ, Bron PA, et al. The impact of Lactobacillus plantarum WCFS1 teichoic acid D-alanylation on the generation of effector and regulatory T-cells in healthy mice. PLoS One. 2013;8(4):e63099. Published 2013 Apr 30. doi:10.1371/journal.pone.0063099
  • 32. Murakami K, Bujo H, Unoki H, Saito Y. High fat intake induces a population of adipocytes to co-express TLR2 and TNFalpha in mice with insulin resistance. Biochem Biophys Res Commun. 2007;354(3):727-734. doi:10.1016/j.bbrc.2007.01.039
  • 33. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374-2383. doi:10.1007/s00125-007-0791-0
  • 34. Shapiro H, Singer P, Attal-Singer J. Comment on: Reyna et al. (2008) Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57:2595-2602. Diabetes. 2009;58(4):e5-e7. doi:10.2337/db09-0022
  • 35. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015;22(4):658-668. doi:10.1016/j.cmet.2015.07.026
  • 36. Devaraj S, Tobias P, Jialal I. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes [published correction appears in Cytokine. 2011 Dec;56(3):832]. Cytokine. 2011;55(3):441-445. doi:10.1016/j.cyto.2011.03.023
  • 37. Kumari M, Wang X, Lantier L, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126(8):2839-2854. doi:10.1172/JCI86080
  • 38. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015-3025. doi:10.1172/JCI28898
  • 39. Tao C, Holland WL, Wang QA, et al. Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology. 2017;158(5):1260-1270. doi:10.1210/en.2017-00024
  • 40. Jia L, Vianna CR, Fukuda M, et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun. 2014;5:3878. Published 2014 May 12. doi:10.1038/ncomms4878
  • 41. Carvalho FA, Aitken JD, Gewirtz AT, Vijay-Kumar M. TLR5 activation induces secretory interleukin-1 receptor antagonist (sIL-1Ra) and reduces inflammasome-associated tissue damage. Mucosal Immunol. 2011;4(1):102-111. doi:10.1038/mi.2010.57
  • 42. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228-231. doi:10.1126/science.1179721
  • 43. Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147(6):1363-77.e17. doi:10.1053/j.gastro.2014.08.033
  • 44. Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT, Chassaing B. Hepatocyte Toll-Like Receptor 5 Promotes Bacterial Clearance and Protects Mice Against High-Fat Diet-Induced Liver Disease. Cell Mol Gastroenterol Hepatol. 2016;2(5):584-604. Published 2016 May 5. doi:10.1016/j.jcmgh.2016.04.007
  • 45. DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A. 2009;106(49):20853-20858. doi:10.1073/pnas.0906749106
  • 46. Coxib and traditional NSAID Trialists' (CNT) Collaboration, Bhala N, Emberson J, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382(9894):769-779. doi:10.1016/S0140-6736(13)60900-9
  • 47. Illig T, Bongardt F, Schöpfer A, et al. The endotoxin receptor TLR4 polymorphism is not associated with diabetes or components of the metabolic syndrome. Diabetes. 2003;52(11):2861-2864. doi:10.2337/diabetes.52.11.2861
  • 48. Kolek MJ, Carlquist JF, Muhlestein JB, et al. Toll-like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am Heart J. 2004;148(6):1034-1040. doi:10.1016/j.ahj.2004.05.049
  • 49. Santin I, Bilbao JR, de Nanclares GP, Calvo B, Castaño L. No association of TLR2 and TLR4 polymorphisms with type I diabetes mellitus in the Basque population. Ann N Y Acad Sci. 2006;1079:268-272. doi:10.1196/annals.1375.040
  • 50. Al-Daghri NM, Clerici M, Al-Attas O, et al. A nonsense polymorphism (R392X) in TLR5 protects from obesity but predisposes to diabetes. J Immunol. 2013;190(7):3716-3720. doi:10.4049/jimmunol.1202936
  • 51. Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33(4):861-868. doi:10.2337/dc09-1799
  • 52. Suárez-Zamorano N, Fabbiano S, Chevalier C, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21(12):1497-1501. doi:10.1038/nm.3994
  • 53. Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci. 2005;84(4):634-643. doi:10.1093/ps/84.4.634
  • 54. Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Infect Dis. 2013;13(10):889-899. doi:10.1016/S1473-3099(13)70179-8
  • 55. Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes [published correction appears in Science. 2008 Nov 21;322(5905):1188]. Science. 2008;320(5883):1647-1651. doi:10.1126/science.1155725
  • 56. Frosali S, Pagliari D, Gambassi G, Landolfi R, Pandolfi F, Cianci R. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J Immunol Res. 2015;2015:489821. doi:10.1155/2015/489821
  • 57. Spiljar M, Merkler D, Trajkovski M. The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs. Front Immunol. 2017;8:1353. Published 2017 Oct 30. doi:10.3389/fimmu.2017.01353
  • 58. Yiu JH, Dorweiler B, Woo CW. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med (Berl). 2017;95(1):13-20. doi:10.1007/s00109-016-1474-4

Bağırsak Mikrobiyotası ve Toll Benzeri Reseptörler Arasındaki İlişki: Bağışıklık ve Metabolizma

Year 2021, Volume: 5 Issue: 1, 12 - 21, 30.04.2021
https://doi.org/10.34084/bshr.903730

Abstract

İntestinal kanal, mikrobiyota ile simbiyotik bir ilişkinin oluşmasına izin veren ve mikroorganizmaların invazyonunu kısıtlayan çeşitli stratejiler geliştirmiştir. Toll benzeri reseptörler (TLR), makrofajlar, dendritik hücreler (DC'ler), T lenfositler ve bağırsak epitel hücreleri dahil olmak üzere çeşitli hücre tiplerinde ifade edilen reseptörlerdir. Patojenlere özgü ve hayatta kalmaları için gerekli olan patojen ilişkili moleküler modelleri (MAMP) tanıyan patojen tanıma reseptörleri (PRR'ler) olarak görev yapmaktadırlar. İnsanda bağırsak mikrobiyotası ile bağırsak epitel hücreleri ve bağışıklık hücreleri üzerindeki TLR'ler arasındaki etkileşimler, bağışıklık sisteminin homeostazının korunmasına destek olmaktadırlar. TLR ilişkili yolaklar enerjiyi bağışıklık yanıtına ayırmak için bağışıklık hücrelerindeki içsel metabolizmayı düzenlemektedir. TLR2 aktivasyonu ile anti-inflamatuar yanıt sonrası kommensal bakteriler “patojenik olmayan” olarak tanınmaktadır. TLR4 gen ifadesi, obez veya tip 2 diyabet hastalarının adipoz doku, periferik kan veya kas dokusu örneklerinde ve obez farelerin adipoz dokularında artmakta ve insülin direnci ile ilişkili olmaktadır. TLR5 yoksun farelerin mikrobiyota kompozisyonlarındaki değişikliklerle ilişkili olan insülin direnci ve artan adipozite dahil olmak üzere metabolik sendrom geliştirmeye eğilimli oldukları bildirilmiştir. Ayrıca TLR antagonistlerinin kullanımı ile immünosupresyonun sağladığı faydalı etkiler metabolik ve kardiyovasküler hastalıklar için araştırılmaya devam etmektedir. Genetik ve çevre etkisiyle bağırsak mikrobiyotasındaki değişiklikler, sorunlu konak bağışıklık tepkisine neden olabilmekte ve mikrobiyota manipülasyonları ile hastalarda mikrobiyotanın yeniden programlanması erişilebilir ve ümit verici tedavi şekilleri sunabilmektedir. Bu nedenle, mikrobiyota ve bağışıklık sistemi arasındaki ilişkinin metabolik parametreleri nasıl düzenleyeceğini anlamak, metabolik hastalıkların tedavisinde ilerlemeler sağlayabilecektir.

References

  • 1. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115-1118. doi:10.1126/science.1058709
  • 2. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512-519. doi:10.1016/S0140-6736(03)12489-0
  • 3. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159-169. doi:10.1038/nri2710
  • 4. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4659-4665. doi:10.1073/pnas.1006451107
  • 5. Benckert J, Schmolka N, Kreschel C, et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J Clin Invest. 2011;121(5):1946-1955. doi:10.1172/JCI44447
  • 6. Güçlü Durgun S., Determination of gut microbiota fingerprints of healthy families using by culturomics maldi-TOF MS approach, Yüksek lisans tezi, 2019
  • 7. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577-594. doi:10.1053/j.gastro.2007.11.059
  • 8. Deveci Ozkan A, Kaleli S, Onen HI, et al. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. Immunopharmacol Immunotoxicol. 2020;42(2):93-100. doi:10.1080/08923973.2020.1725040
  • 9. Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147(6):1363-77.e17. doi:10.1053/j.gastro.2014.08.033
  • 10. Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59(3):583-594. doi:10.1016/j.jhep.2013.03.033
  • 11. Feingold KR, Moser A, Shigenaga JK, Grunfeld C. Inflammation inhibits the expression of phosphoenolpyruvate carboxykinase in liver and adipose tissue. Innate Immun. 2012;18(2):231-240. doi:10.1177/1753425911398678
  • 12. Cullender TC, Chassaing B, Janzon A, et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe. 2013;14(5):571-581. doi:10.1016/j.chom.2013.10.009
  • 13. Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk!. Annu Rev Physiol. 2012;74:177-198. doi:10.1146/annurev-physiol-020911-153330
  • 14. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A. 1998;95(2):588-593. doi:10.1073/pnas.95.2.588
  • 15. Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995;374(6518):183-186. doi:10.1038/374183a0
  • 16. Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995;374(6518):183-186. doi:10.1038/374183a0
  • 17. Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742-4749. doi:10.1182/blood-2009-10-249540
  • 18. Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323-332. doi:10.1038/ni.2833
  • 19. Rodríguez-Prados JC, Través PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185(1):605-614. doi:10.4049/jimmunol.0901698
  • 20. Sanin DE, Prendergast CT, Mountford AP. IL-10 Production in Macrophages Is Regulated by a TLR-Driven CREB-Mediated Mechanism That Is Linked to Genes Involved in Cell Metabolism. J Immunol. 2015;195(3):1218-1232. doi:10.4049/jimmunol.1500146
  • 21. Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell. 2003;12(4):805-816. doi:10.1016/s1097-2765(03)00384-8
  • 22. Chow EK, Castrillo A, Shahangian A, et al. A role for IRF3-dependent RXRalpha repression in hepatotoxicity associated with viral infections. J Exp Med. 2006;203(12):2589-2602. doi:10.1084/jem.20060929
  • 23. Vaz B, de Lera ÁR. Advances in drug design with RXR modulators. Expert Opin Drug Discov. 2012;7(11):1003-1016. doi:10.1517/17460441.2012.722992
  • 24. Li Q, Pène V, Krishnamurthy S, Cha H, Liang TJ. Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nat Med. 2013;19(6):722-729. doi:10.1038/nm.3190
  • 25. Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269-7272. doi:10.1128/JVI.79.11.7269-7272.2005
  • 26. Huang YL, Morales-Rosado J, Ray J, et al. Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. J Biol Chem. 2014;289(5):3001-3012. doi:10.1074/jbc.M113.524587
  • 27. Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW Jr. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 2013;18(6):816-830. doi:10.1016/j.cmet.2013.11.001
  • 28. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229-241. doi:10.1016/j.cell.2004.07.002
  • 29. Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 2014;15(4):413-423. doi:10.1016/j.chom.2014.03.006
  • 30. Ochoa-Repáraz J, Mielcarz DW, Wang Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487-495. doi:10.1038/mi.2010.29
  • 31. Smelt MJ, de Haan BJ, Bron PA, et al. The impact of Lactobacillus plantarum WCFS1 teichoic acid D-alanylation on the generation of effector and regulatory T-cells in healthy mice. PLoS One. 2013;8(4):e63099. Published 2013 Apr 30. doi:10.1371/journal.pone.0063099
  • 32. Murakami K, Bujo H, Unoki H, Saito Y. High fat intake induces a population of adipocytes to co-express TLR2 and TNFalpha in mice with insulin resistance. Biochem Biophys Res Commun. 2007;354(3):727-734. doi:10.1016/j.bbrc.2007.01.039
  • 33. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374-2383. doi:10.1007/s00125-007-0791-0
  • 34. Shapiro H, Singer P, Attal-Singer J. Comment on: Reyna et al. (2008) Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57:2595-2602. Diabetes. 2009;58(4):e5-e7. doi:10.2337/db09-0022
  • 35. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015;22(4):658-668. doi:10.1016/j.cmet.2015.07.026
  • 36. Devaraj S, Tobias P, Jialal I. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes [published correction appears in Cytokine. 2011 Dec;56(3):832]. Cytokine. 2011;55(3):441-445. doi:10.1016/j.cyto.2011.03.023
  • 37. Kumari M, Wang X, Lantier L, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126(8):2839-2854. doi:10.1172/JCI86080
  • 38. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015-3025. doi:10.1172/JCI28898
  • 39. Tao C, Holland WL, Wang QA, et al. Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology. 2017;158(5):1260-1270. doi:10.1210/en.2017-00024
  • 40. Jia L, Vianna CR, Fukuda M, et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun. 2014;5:3878. Published 2014 May 12. doi:10.1038/ncomms4878
  • 41. Carvalho FA, Aitken JD, Gewirtz AT, Vijay-Kumar M. TLR5 activation induces secretory interleukin-1 receptor antagonist (sIL-1Ra) and reduces inflammasome-associated tissue damage. Mucosal Immunol. 2011;4(1):102-111. doi:10.1038/mi.2010.57
  • 42. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228-231. doi:10.1126/science.1179721
  • 43. Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147(6):1363-77.e17. doi:10.1053/j.gastro.2014.08.033
  • 44. Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT, Chassaing B. Hepatocyte Toll-Like Receptor 5 Promotes Bacterial Clearance and Protects Mice Against High-Fat Diet-Induced Liver Disease. Cell Mol Gastroenterol Hepatol. 2016;2(5):584-604. Published 2016 May 5. doi:10.1016/j.jcmgh.2016.04.007
  • 45. DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A. 2009;106(49):20853-20858. doi:10.1073/pnas.0906749106
  • 46. Coxib and traditional NSAID Trialists' (CNT) Collaboration, Bhala N, Emberson J, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382(9894):769-779. doi:10.1016/S0140-6736(13)60900-9
  • 47. Illig T, Bongardt F, Schöpfer A, et al. The endotoxin receptor TLR4 polymorphism is not associated with diabetes or components of the metabolic syndrome. Diabetes. 2003;52(11):2861-2864. doi:10.2337/diabetes.52.11.2861
  • 48. Kolek MJ, Carlquist JF, Muhlestein JB, et al. Toll-like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am Heart J. 2004;148(6):1034-1040. doi:10.1016/j.ahj.2004.05.049
  • 49. Santin I, Bilbao JR, de Nanclares GP, Calvo B, Castaño L. No association of TLR2 and TLR4 polymorphisms with type I diabetes mellitus in the Basque population. Ann N Y Acad Sci. 2006;1079:268-272. doi:10.1196/annals.1375.040
  • 50. Al-Daghri NM, Clerici M, Al-Attas O, et al. A nonsense polymorphism (R392X) in TLR5 protects from obesity but predisposes to diabetes. J Immunol. 2013;190(7):3716-3720. doi:10.4049/jimmunol.1202936
  • 51. Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33(4):861-868. doi:10.2337/dc09-1799
  • 52. Suárez-Zamorano N, Fabbiano S, Chevalier C, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21(12):1497-1501. doi:10.1038/nm.3994
  • 53. Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci. 2005;84(4):634-643. doi:10.1093/ps/84.4.634
  • 54. Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Infect Dis. 2013;13(10):889-899. doi:10.1016/S1473-3099(13)70179-8
  • 55. Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes [published correction appears in Science. 2008 Nov 21;322(5905):1188]. Science. 2008;320(5883):1647-1651. doi:10.1126/science.1155725
  • 56. Frosali S, Pagliari D, Gambassi G, Landolfi R, Pandolfi F, Cianci R. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J Immunol Res. 2015;2015:489821. doi:10.1155/2015/489821
  • 57. Spiljar M, Merkler D, Trajkovski M. The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs. Front Immunol. 2017;8:1353. Published 2017 Oct 30. doi:10.3389/fimmu.2017.01353
  • 58. Yiu JH, Dorweiler B, Woo CW. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med (Berl). 2017;95(1):13-20. doi:10.1007/s00109-016-1474-4
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Medical Microbiology
Journal Section Review
Authors

Selen Güçlü Durgun 0000-0003-3002-3919

Asuman Deveci Özkan 0000-0002-3248-4279

Publication Date April 30, 2021
Acceptance Date April 6, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

AMA Güçlü Durgun S, Deveci Özkan A. Bağırsak Mikrobiyotası ve Toll Benzeri Reseptörler Arasındaki İlişki: Bağışıklık ve Metabolizma. J Biotechnol and Strategic Health Res. April 2021;5(1):12-21. doi:10.34084/bshr.903730

Journal of Biotechnology and Strategic Health Research