Review
BibTex RIS Cite

COVID-19 aşısına bağlı yan etkiler; faydalar risklerden ağır basıyor mu?

Year 2023, Volume: 7 Issue: 4, 226 - 230, 31.12.2023
https://doi.org/10.34084/bshr.1367181

Abstract

COVID-19 aşısına bağlı yan etkiler; faydalar risklerden ağır basıyor mu?

COVID-19 aşısına bağlı yan etkiler

COVID-19 aşıları, bu salgını kontrol altına almak için çok kısa sürede, son teknolojiyle üretilen aşılardır. Bu aşılar dünya çapında milyonlarca üretilip kullanılmaktadır. Aşının uygulanması sırasında ve hemen sonrasında bazı hafif lokal yan etkiler bildirilse de, son zamanlarda özellikle mRNA aşılarının kullanılmaya başlanmasıyla birlikte çeşitli organları etkileyen uzun vadeli yan etkiler de bildirilmeye başlanmıştır. Bu derlemede, hafif ve daha nadir olan yan etkilerle ilgili konular tartışılmaktadır.

References

  • World Health Organization. Coronavirus disease (COVID-19) pandemic. Accessed Jan 30 and March 11, 2020.
  • Özdemir Ö. Coronavirus Disease 2019 (COVID-19): Diagnosis and management. Erciyes Med J 2020; 42(3): 242–7. doi: 10.14744/etd.2020.99836 Rodrigues CMC, Plotkin SA. Impact of vaccines; health, economic and social perspectives. Front Microbiol. 2020;11:1526. doi:10.3389/fmicb.2020.01526
  • Özata MC, Özdemir Ö. Vaccine Hesitancy and COVID-19. South Clin Ist Euras. 2023; 34(1): 97-102. doi: 10.14744/scie.2022.62134
  • World Health Organization. Ten threats to global health in 2019. Accessed December 22, 2018.
  • World Health Organization. Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19. Accessed December 31, 2020.
  • World Health Organization. Draft landscape oath tracker of COVID-19 candidate vaccines. Accessed May 21, 2021.
  • World Health Organization. Status of COVID-19 vaccines within WHO EUL/PQ evaluation process. Accessed on July 15, 2021.
  • Dayan S. COVID - 19 ve Aşı. Dicle Med J. 2021;48:98–113. doi: 10.5798/dicletip.1005040
  • Xia S, Zhang Y, Wang Y, et al. Safety oath immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomized, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis . 2021; 21 (1):39–51. doi: 10.1016/S1473-3099(20)30831-8
  • Ozdarendeli A, Sezer Z, Pavel STI, et al. Safety and immunogenicity of an inactivated whole virion SARS-CoV-2 vaccine, TURKOVAC, in healthy adults: Interim results from randomised, double-blind, placebo-controlled phase 1 and 2 trials. Vaccine 2023, 41, 380–390. doi:10.1016/j.vaccine.2022.10.093
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - Preliminary report. N Engl J Med. 2020;383(20):1920-1931. doi:10.1056/NEJMoa2022483
  • Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021;384(19):1824-1835. doi:10.1056/NEJMoa2034201
  • Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854. doi:10.1016/S0140-6736(20)31208-3
  • Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(6):803-812. doi:10.1016/S1473-3099(20)30987-7
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia [published correction appears in Lancet. 2021 Feb 20;397(10275):670]. Lancet. 2021;397(10275):671-681. doi:10.1016/S0140-6736(21)00234-8
  • Bruusgaard-Mouritsen MA, Jensen BM, Poulsen LK, et al. Optimizing investigation of suspected allergy to polyethylene glycols. J Allergy Clin Immunol. 2022;149(1):168-175.e4. doi:10.1016/j.jaci.2021.05.020
  • Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202-1206. doi:10.1001/jamacardio.2021.2833
  • Connors M, Graham BS, Lane HC, et al. SARS-CoV-2 vaccines: Much accomplished, much to learn. Ann Intern Med. 2021;174(5):687-690. doi:10.7326/M21-0111
  • Fatima M, Ahmad Cheema H, Ahmed Khan MH, et al. Development of myocarditis and pericarditis after COVID-19 vaccination in adult population: A systematic review. Ann Med Surg (Lond). 2022;76:103486. doi:10.1016/j.amsu.2022.103486
  • Özdemir Ö, Şeker E, Dikici Ü, et al. Myocarditis development after COVID-19 vaccination in an immunodeficient case. Immunol Lett. 2023; 260:22-23. doi: 10.1016/j.imlet.2023.06.001.
  • Gargano JW, Wallace M, Hadler SC, et al. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: Update from the advisory committee on immunization practices - United States, June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(27):977-982. doi:10.15585/mmwr.mm7027e2
  • Woo EJ, Mba-Jonas A, Dimova RB, et al. Association of receipt of the Ad26.COV2.S COVID-19 vaccine with presumptive Guillain-Barré syndrome, February-July 2021. JAMA. 2021;326(16):1606-1613. doi:10.1001/jama.2021.16496
  • Rzymski P. Guillain-Barré syndrome and COVID-19 vaccines: focus on adenoviral vectors. Front Immunol. 2023;14:1183258. doi:10.3389/fimmu.2023.1183258
  • Abu-Rumeileh S, Abdelhak A, Foschi M, et al. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol. 2021;268(4):1133-1170. doi:10.1007/s00415-020-10124-x
  • Long B, Bridwell R, Gottlieb M. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines. Am J Emerg Med. 2021; 49:58-61. doi: 10.1016/j.ajem.2021.05.054.
  • Pellegrino P, Carnovale C, Pozzi M, et al. On the relationship between human papilloma virus vaccine and autoimmune diseases. Autoimmun Rev. 2014;13(7):736-741. doi:10.1016/j.autrev.2014.01.054
  • Segal Y, Shoenfeld Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol. 2018;15(6):586-594. doi:10.1038/cmi.2017.151
  • Wraith DC, Goldman M, Lambert PH. Vaccination and autoimmune disease: what is the evidence? Lancet. 2003; 362(9396):1659-1666. doi:10.1016/S0140-6736(03)14802-7
  • Chen Y, Xu Z, Wang P, et al. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology. 2022;165(4):386-401. doi:10.1111/imm.13443
  • Özdemir Ö. Might chronic spontaneous urticaria develop after SARS-CoV-2 vaccinations? Eur J Clin Pharmacol. 2023; 79(9):1279-1280. doi: 10.1007/s00228-023-03532-1.

COVID-19 vaccine-associated adverse effects; benefits outweigh the risks?

Year 2023, Volume: 7 Issue: 4, 226 - 230, 31.12.2023
https://doi.org/10.34084/bshr.1367181

Abstract

COVID-19 vaccine-associated adverse effects; benefits outweigh the risks?

COVID-19 vaccine-associated adverse effects

COVID-19 vaccines are vaccines produced with the latest technology in a very short time to get rid of this disease. These vaccines have been produced and used in millions around the world. Although some simple local side effects have been reported during and immediately after the administration of the vaccine, long-term side effects affecting various organs have recently been begun to be reported, especially with the use of mRNA vaccines. This minireview discusses the issues related to these simple and less common side effects.

References

  • World Health Organization. Coronavirus disease (COVID-19) pandemic. Accessed Jan 30 and March 11, 2020.
  • Özdemir Ö. Coronavirus Disease 2019 (COVID-19): Diagnosis and management. Erciyes Med J 2020; 42(3): 242–7. doi: 10.14744/etd.2020.99836 Rodrigues CMC, Plotkin SA. Impact of vaccines; health, economic and social perspectives. Front Microbiol. 2020;11:1526. doi:10.3389/fmicb.2020.01526
  • Özata MC, Özdemir Ö. Vaccine Hesitancy and COVID-19. South Clin Ist Euras. 2023; 34(1): 97-102. doi: 10.14744/scie.2022.62134
  • World Health Organization. Ten threats to global health in 2019. Accessed December 22, 2018.
  • World Health Organization. Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19. Accessed December 31, 2020.
  • World Health Organization. Draft landscape oath tracker of COVID-19 candidate vaccines. Accessed May 21, 2021.
  • World Health Organization. Status of COVID-19 vaccines within WHO EUL/PQ evaluation process. Accessed on July 15, 2021.
  • Dayan S. COVID - 19 ve Aşı. Dicle Med J. 2021;48:98–113. doi: 10.5798/dicletip.1005040
  • Xia S, Zhang Y, Wang Y, et al. Safety oath immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomized, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis . 2021; 21 (1):39–51. doi: 10.1016/S1473-3099(20)30831-8
  • Ozdarendeli A, Sezer Z, Pavel STI, et al. Safety and immunogenicity of an inactivated whole virion SARS-CoV-2 vaccine, TURKOVAC, in healthy adults: Interim results from randomised, double-blind, placebo-controlled phase 1 and 2 trials. Vaccine 2023, 41, 380–390. doi:10.1016/j.vaccine.2022.10.093
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - Preliminary report. N Engl J Med. 2020;383(20):1920-1931. doi:10.1056/NEJMoa2022483
  • Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021;384(19):1824-1835. doi:10.1056/NEJMoa2034201
  • Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854. doi:10.1016/S0140-6736(20)31208-3
  • Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(6):803-812. doi:10.1016/S1473-3099(20)30987-7
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia [published correction appears in Lancet. 2021 Feb 20;397(10275):670]. Lancet. 2021;397(10275):671-681. doi:10.1016/S0140-6736(21)00234-8
  • Bruusgaard-Mouritsen MA, Jensen BM, Poulsen LK, et al. Optimizing investigation of suspected allergy to polyethylene glycols. J Allergy Clin Immunol. 2022;149(1):168-175.e4. doi:10.1016/j.jaci.2021.05.020
  • Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202-1206. doi:10.1001/jamacardio.2021.2833
  • Connors M, Graham BS, Lane HC, et al. SARS-CoV-2 vaccines: Much accomplished, much to learn. Ann Intern Med. 2021;174(5):687-690. doi:10.7326/M21-0111
  • Fatima M, Ahmad Cheema H, Ahmed Khan MH, et al. Development of myocarditis and pericarditis after COVID-19 vaccination in adult population: A systematic review. Ann Med Surg (Lond). 2022;76:103486. doi:10.1016/j.amsu.2022.103486
  • Özdemir Ö, Şeker E, Dikici Ü, et al. Myocarditis development after COVID-19 vaccination in an immunodeficient case. Immunol Lett. 2023; 260:22-23. doi: 10.1016/j.imlet.2023.06.001.
  • Gargano JW, Wallace M, Hadler SC, et al. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: Update from the advisory committee on immunization practices - United States, June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(27):977-982. doi:10.15585/mmwr.mm7027e2
  • Woo EJ, Mba-Jonas A, Dimova RB, et al. Association of receipt of the Ad26.COV2.S COVID-19 vaccine with presumptive Guillain-Barré syndrome, February-July 2021. JAMA. 2021;326(16):1606-1613. doi:10.1001/jama.2021.16496
  • Rzymski P. Guillain-Barré syndrome and COVID-19 vaccines: focus on adenoviral vectors. Front Immunol. 2023;14:1183258. doi:10.3389/fimmu.2023.1183258
  • Abu-Rumeileh S, Abdelhak A, Foschi M, et al. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol. 2021;268(4):1133-1170. doi:10.1007/s00415-020-10124-x
  • Long B, Bridwell R, Gottlieb M. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines. Am J Emerg Med. 2021; 49:58-61. doi: 10.1016/j.ajem.2021.05.054.
  • Pellegrino P, Carnovale C, Pozzi M, et al. On the relationship between human papilloma virus vaccine and autoimmune diseases. Autoimmun Rev. 2014;13(7):736-741. doi:10.1016/j.autrev.2014.01.054
  • Segal Y, Shoenfeld Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol. 2018;15(6):586-594. doi:10.1038/cmi.2017.151
  • Wraith DC, Goldman M, Lambert PH. Vaccination and autoimmune disease: what is the evidence? Lancet. 2003; 362(9396):1659-1666. doi:10.1016/S0140-6736(03)14802-7
  • Chen Y, Xu Z, Wang P, et al. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology. 2022;165(4):386-401. doi:10.1111/imm.13443
  • Özdemir Ö. Might chronic spontaneous urticaria develop after SARS-CoV-2 vaccinations? Eur J Clin Pharmacol. 2023; 79(9):1279-1280. doi: 10.1007/s00228-023-03532-1.
There are 30 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Review
Authors

Büşra Kibar 0000-0002-6535-1034

Öner Özdemir 0000-0002-5338-9561

Early Pub Date January 2, 2024
Publication Date December 31, 2023
Acceptance Date November 21, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

AMA Kibar B, Özdemir Ö. COVID-19 vaccine-associated adverse effects; benefits outweigh the risks?. J Biotechnol and Strategic Health Res. December 2023;7(4):226-230. doi:10.34084/bshr.1367181

Journal of Biotechnology and Strategic Health Research