Research Article
BibTex RIS Cite

Staphylococcus aureus ile Enfekte Makrofajlarda Halkasal RNA'ların Ekspresyon Profili

Year 2025, Volume: 9 Issue: 2, 114 - 123, 31.08.2025

Abstract

Amaç: Staphylococcus aureus (S. aureus) enfeksiyonun kontrolü için konakçı-patojen etkileşimlerinin anlaşılması ve yeni hedeflerin tanımlanması gerekmektedir. Son yıllarda kodlamayan RNA sınıfından olan halkasal RNA'lar (circRNA), stabil yapıları ve dairesel konfigürasyonlari ile biyolojik mekanizmalarda önemli rol oynamakta, vücut sıvılarında ve dokularında bulunmaktadır. Bu çalışma, S. aureus ile enfekte edilmiş makrofajlarda circRNA ekspresyon profilini incelemeyi ve konakçı-patojen etkileşimlerinde circRNA'ların potansiyel rolünü araştırmayı amaçlamıştır.
Yöntem: Makrofaj modeli oluşturmak için THP-1 insan monositik hücreleri kullanılmıştır. THP-1 hücreleri, Phorbol 12-myristate 13-acetate (PMA) ile makrofajlara farklılaştırılmıştır. Daha sonra, THP-1 türevi makrofajlar, S. aureus ATCC 6538P suşu ile 1:25, 1:100 ve 1:250 oranlarında enfekte edilmiştir. Enfeksiyon sonrası hücre dışındaki bakterileri elimine etmek için gentamisin uygulanmıştır. Makrofajlardan RNA izolasyonu Trizol reaktifi kullanılarak yapılmış ve cDNA sentezlenmiştir. Belirlenen 15 adet circRNA geninin ekspresyon seviyeleri RT-qPCR ile analiz edilmiştir. Gen Ontolojisi (GO) analizleri ile circRNA'ların moleküler biyolojik süreçlerdeki rolleri değerlendirilmiştir.
Bulgular: THP-1 hücreleri makrofajlara başarılı bir şekilde farklılaştırılmış ve makrofaj-enfeksiyon modeli oluşturulmuştur. Enfeksiyon oranı arttıkça total RNA konsantrasyonlarında azalma tespit edilmiştir. RT-qPCR sonuçlarına göre 11 farklı circRNA geninin deney gruplarının en az birinde ifade edildiği belirlenmiştir. Özellikle, hsa_circ_0001821 geninin 1:25 enfeksiyon oranında azaldığı (p<0.01), hsa_circ_000869 ifadesinin 1:250 enfeksiyon oranında belirgin bir şekilde arttığı (p<0.0001) ve hsa_circ_0014130 ifadesinin 1:250 enfeksiyon durumunda azaldığı (p<0.0001) tespit edilmiştir. GO analizleri, enfeksiyon ile ilgili circRNA'ların RNA/mRNA-hücresel katabolik süreçlerin düzenlenmesinde ve hücre proliferasyonunda rolleri olduğu gösterilmiştir.
Sonuç: Bu çalışma, S. aureus enfeksiyonuna maruz kalan makrofajlarda circRNA ekspresyon profillerinin doza bağımlı olarak değişebileceğini ortaya koymuştur. Özellikle circRNA’larin konakçı-patojen etkileşimlerinin anlaşılması ve yeni tanı/tedavi stratejilerinin geliştirilmesi için önemli bir temel oluşturmaktadır

Project Number

TS-KBP-2024-31870

References

  • 1. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520-532. doi:10.1056/NEJM199808203390806.
  • 2. Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr. 2019;7(2):10.1128/microbiolspec.gpp3-0039-2018. doi:10.1128/microbiolspec.GPP3-0039-2018.
  • 3. Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23(15):8088. doi:10.3390/ijms23158088.
  • 4. Jubrail J, Morris P, Bewley MA, et al. Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages. Cell Microbiol. 2016;18(1):80-96. doi:10.1111/cmi.12485.
  • 5. Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol. 2021;11:620339. doi:10.3389/fimmu.2020.620339.
  • 6. Lacoma A, Cano V, Moranta D, et al. Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence. 2017;8(8):1761-1775. doi:10.1080/21505594.2017.1361089.
  • 7. O'Keeffe KM, Wilk MM, Leech JM, et al. Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection. Infect Immun. 2015;83(9):3445-3457. doi:10.1128/IAI.00358-15.
  • 8. Tuchscherr L, Medina E, Hussain M, et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med. 2011;3(3):129-141. doi:10.1002/emmm.201000115.
  • 9. Thänert R, Goldmann O, Beineke A, Medina E. Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection. Nat Commun. 2017;8:14268. Published 2017 Feb 3. doi:10.1038/ncomms14268.
  • 10. Liang Z, Guo W, Fang S, et al. CircRNAs: Emerging Bladder Cancer Biomarkers and Targets. Front Oncol. 2021;10:606485. doi:10.3389/fonc.2020.606485.
  • 11. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression [published correction appears in PLoS Genet. 2013 Dec;9(12). doi:10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855]. PLoS Genet. 2013;9(9):e1003777. doi:10.1371/journal.pgen.1003777.
  • 12. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. PLoS One. 2015;10(10):e0141214. doi:10.1371/journal.pone.0141214.
  • 13. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5):468. Published 2021 May 11. doi:10.1038/s41419-021-03743-3.
  • 14. Fu Y, Wang J, Qiao J, Yi Z. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med. 2019;23(3):1917-1925. doi:10.1111/jcmm.14093.
  • 15. Liu H, Lu G, Wang W, et al. A Panel of CircRNAs in the Serum Serves as Biomarkers for Mycobacterium tuberculosis Infection. Front Microbiol. 2020;11:1215. doi:10.3389/fmicb.2020.01215.
  • 16. Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells. 2023;12(10):1427. doi:10.3390/cells12101427.
  • 17. Xie X, Chen Z, Han M, et al. Profile analysis of circRNAs in human THP-1 derived macrophages infected with intracellular Staphylococcus aureus. Microb Pathog. 2022;165:105466. doi:10.1016/j.micpath.2022.105466.
  • 18. Zhang Y, Shi L, Mei H, et al. Inflamed macrophage microvesicles induce insulin resistance in human adipocytes. Nutr Metab (Lond). 2015;12:21. doi:10.1186/s12986-015-0016-3.
  • 19. Chen Z, Xie Z, Han M, et al. Global Transcriptomic Study of Circular-RNA Expression Profile in Osteoclasts Infected by Intracellular Staphylococcus aureus. Infect Immun. 2023;91(6):e0035722. doi:10.1128/iai.00357-22.
  • 20. Li L, Wang M, Chen Q, et al. Intracellular Staphylococcus aureus infection in human osteoblasts: circRNA expression analysis. Heliyon. 2024;10(7):e28461. doi:10.1016/j.heliyon.2024.e28461.
  • 21. Liu CX, Li X, Nan F, et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell. 2019;177(4):865-880.e21. doi:10.1016/j.cell.2019.03.046.
  • 22. Gong Z, Hu W, Zhou C, Guo J, Yang L, Wang B. Recent advances and perspectives on the development of circular RNA cancer vaccines. NPJ Vaccines. 2025;10(1):41. doi:10.1038/s41541-025-01097-x.
  • 23. Zhang N, Wang X, Li Y, et al. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol. 2025;8(1):77. doi:10.1038/s42003-024-07383-z.
  • 24. Long DR, Holmes EA, Lo HY, et al. Clinical and in vitro models identify distinct adaptations enhancing Staphylococcus aureus pathogenesis in human macrophages. PLoS Pathog. 2024;20(7):e1012394. doi:10.1371/journal.ppat.1012394.
  • 25. Bai S, Wen X, Li B, et al. Extracellular vesicles from alveolar macrophages harboring phagocytosed methicillin-resistant Staphylococcus aureus induce necroptosis. Cell Rep. 2024;43(7):114453. doi:10.1016/j.celrep.2024.114453. 26. Yuan H, Liu F, Long J, Duan G, Yang H. A review on circular RNAs and bacterial infections. Int J Biol Macromol. 2023;244:125391. doi:10.1016/j.ijbiomac.2023.125391.

Expression Profiling of Circular RNAs in Staphylococcus aureus-Infected Macrophages

Year 2025, Volume: 9 Issue: 2, 114 - 123, 31.08.2025

Abstract

Objective: Understanding host-pathogen interactions and identifying novel targets are crucial for controlling Staphylococcus aureus (S. aureus) infections. Circular RNAs (circRNAs), a class of non-coding RNAs, have gained attention due to their stable structure, circular configuration, and roles in biological mechanisms. They are detectable in bodily fluids and tissues, suggesting potential as biomarkers. This study aimed to investigate the circRNA expression profile in S. aureus-infected macrophages and explore their potential role in host-pathogen interactions.
Methods: THP-1 human monocytic cells were differentiated into macrophages using Phorbol 12-myristate 13-acetate (PMA). THP-1-derived macrophages were infected with S. aureus ATCC 6538P at ratios of 1:25, 1:100, and 1:250. Extracellular bacteria were eliminated using gentamicin. RNA was isolated with Trizol reagent, and cDNA was synthesized. The expression levels of 15 selected circRNA genes were analyzed via RT-qPCR. Gene Ontology (GO) analyses were performed to assess their roles in molecular biological processes.
Results: THP-1 cells were successfully differentiated into macrophages, establishing an infection model. As the infection ratio increased, total RNA concentrations decreased. RT-qPCR revealed that 11 circRNAs were differentially expressed in at least one infection group. Notably, hsa_circ_0001821 was downregulated at a 1:25 infection ratio (p<0.01), hsa_circ_000869 was significantly upregulated at 1:250 (p<0.0001), and hsa_circ_0014130 was downregulated at 1:250 (p<0.0001). GO analyses indicated that infection-related circRNAs regulate RNA/mRNA catabolic processes and cell proliferation.
Conclusion: This study demonstrates that S. aureus infection alters macrophage circRNA expression in a dose-dependent manner. These findings highlight circRNAs as potential regulators of host-pathogen interactions, providing a foundation for novel diagnostic and therapeutic strategies.

Ethical Statement

Çalışmamız invitro ortamda gerçekleşmiştir. Etik izine gerek yoktur

Supporting Institution

Ege Üniversitesi Bilimsel Proje Araştırma Koordinatörlüğü

Project Number

TS-KBP-2024-31870

References

  • 1. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520-532. doi:10.1056/NEJM199808203390806.
  • 2. Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr. 2019;7(2):10.1128/microbiolspec.gpp3-0039-2018. doi:10.1128/microbiolspec.GPP3-0039-2018.
  • 3. Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23(15):8088. doi:10.3390/ijms23158088.
  • 4. Jubrail J, Morris P, Bewley MA, et al. Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages. Cell Microbiol. 2016;18(1):80-96. doi:10.1111/cmi.12485.
  • 5. Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol. 2021;11:620339. doi:10.3389/fimmu.2020.620339.
  • 6. Lacoma A, Cano V, Moranta D, et al. Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence. 2017;8(8):1761-1775. doi:10.1080/21505594.2017.1361089.
  • 7. O'Keeffe KM, Wilk MM, Leech JM, et al. Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection. Infect Immun. 2015;83(9):3445-3457. doi:10.1128/IAI.00358-15.
  • 8. Tuchscherr L, Medina E, Hussain M, et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med. 2011;3(3):129-141. doi:10.1002/emmm.201000115.
  • 9. Thänert R, Goldmann O, Beineke A, Medina E. Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection. Nat Commun. 2017;8:14268. Published 2017 Feb 3. doi:10.1038/ncomms14268.
  • 10. Liang Z, Guo W, Fang S, et al. CircRNAs: Emerging Bladder Cancer Biomarkers and Targets. Front Oncol. 2021;10:606485. doi:10.3389/fonc.2020.606485.
  • 11. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression [published correction appears in PLoS Genet. 2013 Dec;9(12). doi:10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855]. PLoS Genet. 2013;9(9):e1003777. doi:10.1371/journal.pgen.1003777.
  • 12. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. PLoS One. 2015;10(10):e0141214. doi:10.1371/journal.pone.0141214.
  • 13. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5):468. Published 2021 May 11. doi:10.1038/s41419-021-03743-3.
  • 14. Fu Y, Wang J, Qiao J, Yi Z. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med. 2019;23(3):1917-1925. doi:10.1111/jcmm.14093.
  • 15. Liu H, Lu G, Wang W, et al. A Panel of CircRNAs in the Serum Serves as Biomarkers for Mycobacterium tuberculosis Infection. Front Microbiol. 2020;11:1215. doi:10.3389/fmicb.2020.01215.
  • 16. Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells. 2023;12(10):1427. doi:10.3390/cells12101427.
  • 17. Xie X, Chen Z, Han M, et al. Profile analysis of circRNAs in human THP-1 derived macrophages infected with intracellular Staphylococcus aureus. Microb Pathog. 2022;165:105466. doi:10.1016/j.micpath.2022.105466.
  • 18. Zhang Y, Shi L, Mei H, et al. Inflamed macrophage microvesicles induce insulin resistance in human adipocytes. Nutr Metab (Lond). 2015;12:21. doi:10.1186/s12986-015-0016-3.
  • 19. Chen Z, Xie Z, Han M, et al. Global Transcriptomic Study of Circular-RNA Expression Profile in Osteoclasts Infected by Intracellular Staphylococcus aureus. Infect Immun. 2023;91(6):e0035722. doi:10.1128/iai.00357-22.
  • 20. Li L, Wang M, Chen Q, et al. Intracellular Staphylococcus aureus infection in human osteoblasts: circRNA expression analysis. Heliyon. 2024;10(7):e28461. doi:10.1016/j.heliyon.2024.e28461.
  • 21. Liu CX, Li X, Nan F, et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell. 2019;177(4):865-880.e21. doi:10.1016/j.cell.2019.03.046.
  • 22. Gong Z, Hu W, Zhou C, Guo J, Yang L, Wang B. Recent advances and perspectives on the development of circular RNA cancer vaccines. NPJ Vaccines. 2025;10(1):41. doi:10.1038/s41541-025-01097-x.
  • 23. Zhang N, Wang X, Li Y, et al. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol. 2025;8(1):77. doi:10.1038/s42003-024-07383-z.
  • 24. Long DR, Holmes EA, Lo HY, et al. Clinical and in vitro models identify distinct adaptations enhancing Staphylococcus aureus pathogenesis in human macrophages. PLoS Pathog. 2024;20(7):e1012394. doi:10.1371/journal.ppat.1012394.
  • 25. Bai S, Wen X, Li B, et al. Extracellular vesicles from alveolar macrophages harboring phagocytosed methicillin-resistant Staphylococcus aureus induce necroptosis. Cell Rep. 2024;43(7):114453. doi:10.1016/j.celrep.2024.114453. 26. Yuan H, Liu F, Long J, Duan G, Yang H. A review on circular RNAs and bacterial infections. Int J Biol Macromol. 2023;244:125391. doi:10.1016/j.ijbiomac.2023.125391.
There are 25 citations in total.

Details

Primary Language English
Subjects Gene Expression, Microbiology (Other)
Journal Section Research Article
Authors

Ufuk Mert 0000-0001-8162-5325

Deniz Ece 0009-0000-2787-2640

Kerem Güngör 0009-0001-3911-4668

Tolga Coşkun 0009-0007-9263-6549

Uygar Alaman 0009-0009-4932-5010

Gökhan Gurur Gökmen 0000-0002-1180-0682

Ayşe Caner 0000-0003-3058-9971

Project Number TS-KBP-2024-31870
Early Pub Date September 10, 2025
Publication Date August 31, 2025
Submission Date June 14, 2025
Acceptance Date July 1, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

AMA Mert U, Ece D, Güngör K, et al. Expression Profiling of Circular RNAs in Staphylococcus aureus-Infected Macrophages. J Biotechnol and Strategic Health Res. August 2025;9(2):114-123.

Journal of Biotechnology and Strategic Health Research