Research Article
BibTex RIS Cite

Matematiksel Modelleme Sürecini Açıklayan Farklı Yaklaşımlar

Year 2013, Volume: 2 Issue: 1, 127 - 145, 10.06.2013

Abstract

Çalışmanın amacı, farklı matematiksel modelleme süreci yaklaşımlarını ele alarak,
çalışmalardaki modelleme süreçlerinin aralarındaki farklılıkları ve benzerlikleri ortaya koymaktır.
Literatür taraması niteliğindeki çalışmada, ilgili literatür “matematiksel modelleme sürecini şekillendiren
temel bileşenler ve basamaklar nelerdir?” ve “temel basamakları özel kılan bilişsel aktiviteler nasıl
şekillenmektedir?” soruları çerçevesinde incelenmiştir. Matematiksel ve gerçek yaşam arasındaki geçiş,
matematiksel modeli kurma, çözme gibi basamaklar süreçteki önemli basamaklar olarak karşımıza
çıkmaktadır. İlk çalışmalardaki farklı modelleme süreçlerinde genellikle temel basamaklar ön
plandayken; son yıllardaki modelleme süreçlerinde basamakların yanı sıra bileşenlerin de dikkate alındığı
görülmektedir. Modelleme sürecindeki bilişsel süreçlerin açıklanması, problem çözme sürecindeki
zorlukları ortaya çıkardığı gibi, modelleme problemleriyle gerçek yaşam ve matematiğin
ilişkilendirilmesini, bilişsel ve üst bilişsel becerilerin ortaya çıkarılmasını veya geliştirilmesini sağlayacak
bilinçli tasarlanan öğretim ortamlarının yaratılmasında büyük önem taşımaktadır. Çalışma modelleme
sürecine ve modelleme problemlerinin kullanımına dair kapsamlı bir bakış açısı getireceği
düşünülmektedir.

References

  • Abrams, J. P. (2001). Mathematical Modeling: Teaching the Open-Ended Application of Mathematics. The Teaching Mathematical Modeling and the of Representation. 2001 Yearbook, NCTM, (Eds. Cuoco, A.A. and Curcio, F.R.).
  • Baki, A. (2002). Öğrenen ve Öğretenler İçin Bilgisayar Destekli Matematik. BİTAV-Ceren Yayın Dağıtım, İstanbul.
  • Berry, J. ve K. Houston (1995). Mathematical Modelling. Bristol: J. W. Arrowsmith Ltd.
  • Berry, J. ve Davies, A. (1996) Written Reports. In C.R. Haines and S. Dunthorne (eds) Mathematics Learning and assessment: Sharing Innovative Practices. London: Arnold, 3.3-3.11.
  • Biccard, P. ve Wessels, D. C. J. (2011). Documenting the Development of Modelling Competencies of Grade 7 Mathematics Students. International Perspectives on the Teaching and Learning of Mathematical Modelling. 1(5), 375-383.
  • Blomhİj, M. ve Jensen T. H. (2006). What’s All the Fuss about Competencies? Experiences with Using a Competence Perspective on Mathematics Education to Develop the Teaching of Mathematical Modelling. In W. Blum, P.L. Galbraith and M. Niss: Modelling and Applications in Mathematics Education. New York: Springer, 2(2), 45-56.
  • Blum, W. ve Niss, M. (1989). Mathematical Problem Solving, Modelling, Applications, and Links to Other Subjects – State, Trends and Issues in Mathematics Instruction. M. Niss, W. Blum ve I. Huntley (Ed.). Modelling Applications and Applied Problem Solving. (s.1-19). England: Halsted Pres.
  • Blum, W. ve Leiß, D. (2005). „Filling Up“- The Problem of Independence-Preserving Teacher İnterventions in Lessons With Demanding Modelling Tasks. In: Bosch, Marianna (Ed.): CERME 4 – Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education. 1623-1633.
  • Blum, W. ve Leiß, D. (2007). How Do Students and Teachers Deal With Modelling Problems? In C. Haines et al. (Eds), Mathematical Modelling. Education, Engineering and Economics. Chichester: Horwood. 222-231.
  • Blum, W. ve Niss, M. (1991). Applied Mathematical Problem Solving, Modelling, Application, and Links to Other Subjects-State, Trends and Issues in Mathematics İnstruction. Educational Studies in Mathematics. 22(1), 37- 68.
  • Borromeo Ferri, R. (2006). Theoretical and Empirical Differentiations of Phases in the Modelling Process. In Kaiser, G., Sriraman B. & Blomhoij, M. (Eds.) Zentralblatt für Didaktik der Mathematik. 38(2), 86-95.
  • Cheng, A. K. (2001). Teaching Mathematical Modelling in Singapore Schools. The Mathematics Educator. 6(1), 63-75.
  • Cheng, A. K. (2006). Differential Equations: Models and Methods. McGraw-Hill, Singapore.
  • Cheng, A. C. (2010). Teaching and Learning Mathematical Modelling with Technology, Nanyang Technological University.
  • <http://atcm.mathandtech.org/ep2010/invited/3052010_18134.pdf> erişim tarihi 20.03.2012.
  • Doerr, H. M. (1997). Experiment, Simulation And Analysis: An Integrated Instructional Approach To The Concept Of Force. International Journal Of Science Education. 19, 265- 282.
  • English, L. D. ve Watters, J. J. (2004). Mathematical Modeling in the Early School Years. Mathematics Education Research Journal. 16(3), 59-80.
  • Galbraith, P., ve Stillman, G. (2006). A Framework for Identifying Student Blockages During Transitions in the Modelling Process. Zentralblatt für Didaktik der Mathematik-ZDM. 38(2), 143-162.
  • Haines, C. R. ve Crouch, R. (2010). Remarks on a Modeling Cycle and Interpreting Behaviours. In R. Lesh, P. L. Galbraith, W. Blum & A. Hurford (Eds.), Modeling Students' Mathematical Modeling Competencies, ICTMA 13. Part 5, 145-154.
  • Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme problemlerinin çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama. Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, İzmir.
  • Kaiser, G., (2005). Introduction to the Working Group “Applications and Modelling”. CERME4 Proceedings, p 1611-1622.
  • Kaiser, G. ve Sriraman, B. (2006). A Global Survey of International Perspectives on Modelling in Mathematics Education. Zentralblatt für Didaktik der Mathematik, 38(3), 302-310.
  • Kapur, J. N. (1982). The Art of Teaching the Art of Mathematical Modeling. International Journal of Mathematical Education in Science and Technology. 13(2), 185-192.
  • Lesh, R., Surber, D. ve Zawojewski, J. (1983). Phases in Modelling and Phase-Related Processes. J. C. Bergeron ve N. Herscovics. (Ed.), Proceedings of the Fifth Annual Meetig Psychlogy of Mathematics Education, North American Chapter. 2, 129-36.
  • Lesh, R. ve Doerr, H. M. (2003). (Eds.). Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning and Teaching. Mahwah, NJ:Lawrence Erlbaum.
  • Lingefjärd, T. (2000). Mathematical Modeling by Prospective Teachers Using Technology. Electronically published doctoral dissertation, University of Georgia.
  • <http://ma-serv.did.gu.se/matematik/thomas.htm> erişim tarihi 28.11.2010.
  • Lingefjärd, T. (2006). Faces of Mathematical Modeling. Zentralblatt für Didaktik der Mathematik-ZDM. 38(2), 96-112.
  • Mason, J. (1988). Modelling: What Do We Really Want Pupils to Learn? In D. Pimm (Ed.), Mathematics, Teachers and Children. (pp. 201-215). London: Hodder & Stoughton.
  • Milli Eğitim Bakanlığı (MEB). (2006). Ortaöğretim Matematik Dersi Öğretim Programı. Ankara: MEB Basımevi.
  • Mousoulides, N., Sriraman, B. ve Christou, C. (2007). From Problem Solving to Modelling: The Emergence of Models and Modelling Perspectives. Nordic Studies in Mathematics Education. 12(1), 23-47.
  • Müller, G., ve Wittmann, E. (1984). Der Mathematikunterricht in der Primarstufe. Braunschweig: Vieweg.
  • Niss, M. (1989). Aims and Scope of Applications and Modelling in Mathematics Curricula. In W. Blum, J. S. Berry, R. Biehler, I. Huntley, G. Kaiser-Messmer & L. Profke (Eds.), Applications and Modelling in Learning and Teaching Mathematics. (pp. 22-31). Chichester: Ellis Horwood.
  • Peter-Koop, A. (2004). Fermi Problems in Primary Mathematics Classrooms: Pupils’ Interactive Modelling Processes. In I. Putt, R. Farragher, & M. McLean (Eds.), Mathematics education for the Third Millenium: Towards 2010 (Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia, pp. 454-461). Townsville, Queensland: MERGA.
  • Pollak, H. (1979) The Interaction between Mathematics and other School Subjects. UNESCO (Ed.). New Trends in Mathematics Teaching IV. Paris.
  • Polya, G. (1957). How to Solve it- A New Aspect of Mathematical Method. New York: Doubleday ve Company, Inc.
  • Schoenfeld, A. H. (1985). Mathematical Problem Solving. San Diego: Academic Press Inc.
  • Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics. D. A. Grouws (Ed.). Handbook of Research on Mathematics Teaching and Learning (s. 334– 370). Macmillan: New York.
  • Siller, H. S. ve Greefrath, G. (2010). Mathematical Modelling In Class Regarding To Technology. CERME 6 – Proceedings of the sixth Congress of the European Society for Research in Mathematics Education. 108-117.
  • Sriraman, B. (2005). Conceptualizing the Notion of Model Eliciting. Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education. Sant Feliu de Guíxols, Spain.
  • Stillman, G., Galbraith, P., Brown, J. ve Edwards, I.(2007). A Framework for Success in Implementing Mathematical Modelling in the Secondary Classroom. Mathematics: Essential Research, Essential Practice. 2, 688- 697.
  • Treilibs, V., Burkhardt, H., ve Low, B. (1980). Formulation Processes in Mathematical Modelling. Nottingham: University of Nottingham Shell Centre for Mathematical Education.
  • Trelinski, G. (1983). Spontaneous Mathematization of Situations Outside Mathematics. Educational Studies in Mathematics. 14, 275-284.
  • Voskoglou, M. G. (2006). The Use of Mathematical Modelling as a Tool for Learning Mathematics. Quaderni di Ricerca in Didattica. 16, 53-60.

Different Approaches Clarifying Mathematical Modeling Process

Year 2013, Volume: 2 Issue: 1, 127 - 145, 10.06.2013

Abstract

The purpose of the study is to reveal the differences and similarities between
modeling process by dealing with mathematical modeling process in literature. In this study, literature
review, the literature in question was examined through the questions: “What are the basic components
and steps in the mathematical modeling process?” and “How to be shaped mental activities in occurring
basic steps?”. Transition between mathematical and real world and the steps such as making and
solving the mathematical model are important part of modeling process. It was seen that the basic
components of mathematical modeling were generally considered in initial studies but in last studies it
was examined the components of mathematical modeling as well as basic steps. Explaining the mental
activities in modeling cycle exposes blockages of problem solving process. Besides, they are great
importance for creating learning environments providing relation between real world and mathematics,
and occurrence and improvement of cognitive and meta-cognitive skills. It is thought that this study may
bring a comprehensive perspective related to use of modeling problems and modeling process

References

  • Abrams, J. P. (2001). Mathematical Modeling: Teaching the Open-Ended Application of Mathematics. The Teaching Mathematical Modeling and the of Representation. 2001 Yearbook, NCTM, (Eds. Cuoco, A.A. and Curcio, F.R.).
  • Baki, A. (2002). Öğrenen ve Öğretenler İçin Bilgisayar Destekli Matematik. BİTAV-Ceren Yayın Dağıtım, İstanbul.
  • Berry, J. ve K. Houston (1995). Mathematical Modelling. Bristol: J. W. Arrowsmith Ltd.
  • Berry, J. ve Davies, A. (1996) Written Reports. In C.R. Haines and S. Dunthorne (eds) Mathematics Learning and assessment: Sharing Innovative Practices. London: Arnold, 3.3-3.11.
  • Biccard, P. ve Wessels, D. C. J. (2011). Documenting the Development of Modelling Competencies of Grade 7 Mathematics Students. International Perspectives on the Teaching and Learning of Mathematical Modelling. 1(5), 375-383.
  • Blomhİj, M. ve Jensen T. H. (2006). What’s All the Fuss about Competencies? Experiences with Using a Competence Perspective on Mathematics Education to Develop the Teaching of Mathematical Modelling. In W. Blum, P.L. Galbraith and M. Niss: Modelling and Applications in Mathematics Education. New York: Springer, 2(2), 45-56.
  • Blum, W. ve Niss, M. (1989). Mathematical Problem Solving, Modelling, Applications, and Links to Other Subjects – State, Trends and Issues in Mathematics Instruction. M. Niss, W. Blum ve I. Huntley (Ed.). Modelling Applications and Applied Problem Solving. (s.1-19). England: Halsted Pres.
  • Blum, W. ve Leiß, D. (2005). „Filling Up“- The Problem of Independence-Preserving Teacher İnterventions in Lessons With Demanding Modelling Tasks. In: Bosch, Marianna (Ed.): CERME 4 – Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education. 1623-1633.
  • Blum, W. ve Leiß, D. (2007). How Do Students and Teachers Deal With Modelling Problems? In C. Haines et al. (Eds), Mathematical Modelling. Education, Engineering and Economics. Chichester: Horwood. 222-231.
  • Blum, W. ve Niss, M. (1991). Applied Mathematical Problem Solving, Modelling, Application, and Links to Other Subjects-State, Trends and Issues in Mathematics İnstruction. Educational Studies in Mathematics. 22(1), 37- 68.
  • Borromeo Ferri, R. (2006). Theoretical and Empirical Differentiations of Phases in the Modelling Process. In Kaiser, G., Sriraman B. & Blomhoij, M. (Eds.) Zentralblatt für Didaktik der Mathematik. 38(2), 86-95.
  • Cheng, A. K. (2001). Teaching Mathematical Modelling in Singapore Schools. The Mathematics Educator. 6(1), 63-75.
  • Cheng, A. K. (2006). Differential Equations: Models and Methods. McGraw-Hill, Singapore.
  • Cheng, A. C. (2010). Teaching and Learning Mathematical Modelling with Technology, Nanyang Technological University.
  • <http://atcm.mathandtech.org/ep2010/invited/3052010_18134.pdf> erişim tarihi 20.03.2012.
  • Doerr, H. M. (1997). Experiment, Simulation And Analysis: An Integrated Instructional Approach To The Concept Of Force. International Journal Of Science Education. 19, 265- 282.
  • English, L. D. ve Watters, J. J. (2004). Mathematical Modeling in the Early School Years. Mathematics Education Research Journal. 16(3), 59-80.
  • Galbraith, P., ve Stillman, G. (2006). A Framework for Identifying Student Blockages During Transitions in the Modelling Process. Zentralblatt für Didaktik der Mathematik-ZDM. 38(2), 143-162.
  • Haines, C. R. ve Crouch, R. (2010). Remarks on a Modeling Cycle and Interpreting Behaviours. In R. Lesh, P. L. Galbraith, W. Blum & A. Hurford (Eds.), Modeling Students' Mathematical Modeling Competencies, ICTMA 13. Part 5, 145-154.
  • Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme problemlerinin çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama. Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, İzmir.
  • Kaiser, G., (2005). Introduction to the Working Group “Applications and Modelling”. CERME4 Proceedings, p 1611-1622.
  • Kaiser, G. ve Sriraman, B. (2006). A Global Survey of International Perspectives on Modelling in Mathematics Education. Zentralblatt für Didaktik der Mathematik, 38(3), 302-310.
  • Kapur, J. N. (1982). The Art of Teaching the Art of Mathematical Modeling. International Journal of Mathematical Education in Science and Technology. 13(2), 185-192.
  • Lesh, R., Surber, D. ve Zawojewski, J. (1983). Phases in Modelling and Phase-Related Processes. J. C. Bergeron ve N. Herscovics. (Ed.), Proceedings of the Fifth Annual Meetig Psychlogy of Mathematics Education, North American Chapter. 2, 129-36.
  • Lesh, R. ve Doerr, H. M. (2003). (Eds.). Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning and Teaching. Mahwah, NJ:Lawrence Erlbaum.
  • Lingefjärd, T. (2000). Mathematical Modeling by Prospective Teachers Using Technology. Electronically published doctoral dissertation, University of Georgia.
  • <http://ma-serv.did.gu.se/matematik/thomas.htm> erişim tarihi 28.11.2010.
  • Lingefjärd, T. (2006). Faces of Mathematical Modeling. Zentralblatt für Didaktik der Mathematik-ZDM. 38(2), 96-112.
  • Mason, J. (1988). Modelling: What Do We Really Want Pupils to Learn? In D. Pimm (Ed.), Mathematics, Teachers and Children. (pp. 201-215). London: Hodder & Stoughton.
  • Milli Eğitim Bakanlığı (MEB). (2006). Ortaöğretim Matematik Dersi Öğretim Programı. Ankara: MEB Basımevi.
  • Mousoulides, N., Sriraman, B. ve Christou, C. (2007). From Problem Solving to Modelling: The Emergence of Models and Modelling Perspectives. Nordic Studies in Mathematics Education. 12(1), 23-47.
  • Müller, G., ve Wittmann, E. (1984). Der Mathematikunterricht in der Primarstufe. Braunschweig: Vieweg.
  • Niss, M. (1989). Aims and Scope of Applications and Modelling in Mathematics Curricula. In W. Blum, J. S. Berry, R. Biehler, I. Huntley, G. Kaiser-Messmer & L. Profke (Eds.), Applications and Modelling in Learning and Teaching Mathematics. (pp. 22-31). Chichester: Ellis Horwood.
  • Peter-Koop, A. (2004). Fermi Problems in Primary Mathematics Classrooms: Pupils’ Interactive Modelling Processes. In I. Putt, R. Farragher, & M. McLean (Eds.), Mathematics education for the Third Millenium: Towards 2010 (Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia, pp. 454-461). Townsville, Queensland: MERGA.
  • Pollak, H. (1979) The Interaction between Mathematics and other School Subjects. UNESCO (Ed.). New Trends in Mathematics Teaching IV. Paris.
  • Polya, G. (1957). How to Solve it- A New Aspect of Mathematical Method. New York: Doubleday ve Company, Inc.
  • Schoenfeld, A. H. (1985). Mathematical Problem Solving. San Diego: Academic Press Inc.
  • Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics. D. A. Grouws (Ed.). Handbook of Research on Mathematics Teaching and Learning (s. 334– 370). Macmillan: New York.
  • Siller, H. S. ve Greefrath, G. (2010). Mathematical Modelling In Class Regarding To Technology. CERME 6 – Proceedings of the sixth Congress of the European Society for Research in Mathematics Education. 108-117.
  • Sriraman, B. (2005). Conceptualizing the Notion of Model Eliciting. Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education. Sant Feliu de Guíxols, Spain.
  • Stillman, G., Galbraith, P., Brown, J. ve Edwards, I.(2007). A Framework for Success in Implementing Mathematical Modelling in the Secondary Classroom. Mathematics: Essential Research, Essential Practice. 2, 688- 697.
  • Treilibs, V., Burkhardt, H., ve Low, B. (1980). Formulation Processes in Mathematical Modelling. Nottingham: University of Nottingham Shell Centre for Mathematical Education.
  • Trelinski, G. (1983). Spontaneous Mathematization of Situations Outside Mathematics. Educational Studies in Mathematics. 14, 275-284.
  • Voskoglou, M. G. (2006). The Use of Mathematical Modelling as a Tool for Learning Mathematics. Quaderni di Ricerca in Didattica. 16, 53-60.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Articles
Authors

Arş. Gör. Çağlar Hıdıroğlu

Doç. Dr. Esra Bukova Güzel

Publication Date June 10, 2013
Published in Issue Year 2013 Volume: 2 Issue: 1

Cite

APA Hıdıroğlu, A. G. Ç., & Bukova Güzel, D. D. E. (2013). Matematiksel Modelleme Sürecini Açıklayan Farklı Yaklaşımlar. Bartın University Journal of Faculty of Education, 2(1), 127-145.

All the articles published in the journal are open access and distributed under the conditions of CommonsAttribution-NonCommercial 4.0 International License 

88x31.png


Bartın University Journal of Faculty of Education