Research Article
BibTex RIS Cite

Küresel Grafitli Dökme Demirin Mikroyapısı ve Mekanik Özellikleri Üzerinde Döküm Modülünün Değerlendirilmesi

Year 2025, Volume: 8 Issue: 1, 44 - 53, 30.06.2025
https://doi.org/10.55117/bufbd.1646880

Abstract

Küresel grafitli (Sfero) dökme demir, çift aşamalı bir işlemle üretilmektedir: **Nodülerizasyon / Küreselleştirme** (Mg ve/veya Nadir Toprak Elementleri ile işlem) ve **Aşılama** (FeSiX alaşımı ile işlem, X = Ca, Ba, Sr, Ce, La, Zr vb.). Her aşama belirli amaçlara hizmet etmektedir. Grafitin küreselleşmesi, kalıp kalınlığına bağlı olup, bu nedenle soğuma hızı önemli bir faktördür. Bu çalışmada, **GGG70L alaşımı**, farklı kesit kalınlıklarına sahip plakalar halinde dökülmüştür. Modül değişimi, mikroyapı ve mekanik özellikler açısından incelenmiştir. Nodule boyutu küçüldükçe çekme gerilmesi ve kırılma uzaması azalırken, sertliğin arttığı gözlemlenmiştir. Sonuç olarak, kesit kalınlığının, **küresel grafitli dökme demirlerin mikroyapısını ve mekanik özelliklerini belirleyen önemli bir parametre olduğu** sonucuna varılmıştır.

References

  • [1] S. Viswanathan and A. S. M. I. H. Committee, ASM Handbook, vol. 15. ASM International, 2008.
  • [2] J. D. Mullins, Ductile Iron Data for Design Engineers, 2nd ed. Montreal, Quebec: Rio Tinto Iron & Titanium, Inc., 1998.
  • [3] D. M. Stefanescu, L. P. Dix, R. E. Ruxanda, C. Crobitt-Coburn, and T. S. Piwonka, "Cast iron properties and applications," AFS Trans., vol. 110, 2002.
  • [4] A. Javaid and K. G. Davis, "Microstructural analysis of cast iron," Microsc. Microanal., vol. 8, no. S02, pp. 1326–1327, 2002.
  • [5] O. N. Dogan, K. K. Schrems, and J. A. Hawk, "Wear resistance of cast iron alloys," Albany Research Center (ARC), Albany, OR, 2003.
  • [6] S. Bockus and G. Zaldarys, "Structural integrity of cast iron," Metalurgija, vol. 48, no. 1, 2009.
  • [7] M. Górny and E. Tyrała, "Influence of alloying elements on cast iron properties," J. Mater. Eng. Perform., vol. 22, no. 1, pp. 300–305, 2013.
  • [8] E. Guzel, C. Yuksel, Y. Bayrak, O. Sen, and A. Ekerim, "Hardness and wear behavior of cast iron," Mater. Test., vol. 56, no. 4, pp. 285–288, 2014.
  • [9] P. Minnebo, K.-F. Nilsson, and D. Blagoeva, "Fatigue performance of cast iron," J. Mater. Eng. Perform., vol. 16, no. 1, pp. 35–45, 2007.
  • [10] C. F. Yeung, H. Zhao, and W. B. Lee, "Phase transformation in cast iron," Mater. Charact., vol. 40, no. 4–5, pp. 201–208, 1998.
  • [11] K. M. Pedersen and N. S. Tiedje, "Microstructure and properties of cast iron," Mater. Charact., vol. 59, no. 8, pp. 1111–1121, 2008.
  • [12] K. M. Pedersen and N. Tiedje, "Measurement of cast iron microstructures," Measurement, vol. 41, no. 5, pp. 551–560, 2008.
  • [13] J. Y. Park, K. T. Choi, J. A. Szpunar, K. H. Oh, and H. Y. Ra, "Fracture mechanics of cast iron," Scr. Mater., vol. 46, no. 3, pp. 199–203, 2002.
  • [14] Z. Ignaszak, "Heat treatment effects on cast iron," Int. J. Cast Met. Res., vol. 16, no. 1–3, pp. 93–97, 2003.
  • [15] B. B. Kabnure and R. R. Kolhapure, "Property Optimization of Impeller Casting Using GRA," in Int. Conf. Adv. Thermal Syst. Mater. Design Eng. (ATSMDE2017), 2017.
  • [16] V. D. Shinde, B. Ravi, and K. Narasimhan, "Numerical modeling of cast iron," Int. J. Cast Met. Res., vol. 25, no. 6, pp. 364–373, 2012.
  • [17] F. Alabbasian, S. M. A. Boutorabi, and S. Kheirandish, "Mechanical behavior of cast iron," Mater. Sci. Eng. A, vol. 651, pp. 467–473, 2016.
  • [18] J. O. Choi, J. Y. Kim, C. O. Choi, J. K. Kim, and P. K. Rohatgi, "Wear mechanisms in cast iron," Mater. Sci. Eng. A, vol. 383, no. 2, pp. 323–333, 2004.
  • [19] M. Caldera, G. L. Rivera, R. E. Boeri, and J. A. Sikora, "Cast iron processing techniques," Mater. Sci. Technol., vol. 21, no. 10, pp. 1187–1191, 2005.
  • [20] J. M. Borrajo, R. A. Martínez, R. E. Boeri, and J. A. Sikora, "Microstructural changes in cast iron," ISIJ Int., vol. 42, no. 3, pp. 257–263, 2002.
  • [21] H. R. Abedi, A. Fareghi, H. Saghafian, and S. H. Kheirandish, "Wear performance of cast iron," Wear, vol. 268, no. 3–4, pp. 622–628, 2010.
  • [22] M. Shirani and G. Härkegård, "Failure analysis of cast iron components," Eng. Fail. Anal., vol. 18, no. 1, pp. 12–24, 2011.
  • [23] I. Syafa’at, F. Hilmy, and M. Tauviqirrahman, "Thermal stability of cast iron," J. Phys. Sci., vol. 29, 2018.
  • [24] M. A. Azeem, M. K. Bjerre, R. C. Atwood, N. Tiedje, and P. D. Lee, "X-ray analysis of cast iron structures," Acta Mater., vol. 155, pp. 393–401, 2018.
  • [25] N. S. Tiedje, M. K. Bjerre, M. A. Azeem, and J. H. Hattel, "Cast iron properties under various cooling conditions," Trans. Indian Inst. Met., vol. 71, no. 11, pp. 2699–2705, 2018.
  • [26] R. Saito, T. Maruyama, T. Nakamura, H. Yanagitani, T. Sakai, and K. Nakamoto, "Microstructural analysis of cast iron," Int. J. Met., pp. 1–7, 2018.
  • [27] A. D. Mohammed and M. Kachit, "Mechanical testing of cast iron," Int. J. Appl. Eng. Res., vol. 12, no. 5, pp. 656–663, 2017.
  • [28] S. N. Lekakh, "Metallurgical processing of cast iron," Metall. Mater. Trans. B, vol. 50, no. 2, pp. 890–902, 2019.
  • [29] S. N. Lekakh, "Influence of heat treatment on cast iron," ISIJ Int., vol. 56, no. 5, pp. 812–819, 2016.
  • [30] D. M. Stefanescu, G. Alonso, P. Larranaga, and R. Suarez, "Advanced cast iron processing techniques," Acta Mater., vol. 103, pp. 103–114, 2016.

Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron

Year 2025, Volume: 8 Issue: 1, 44 - 53, 30.06.2025
https://doi.org/10.55117/bufbd.1646880

Abstract

Nodular graphite (Ductile) cast iron is produced by a double treatment; Nodularization / Spheroidization (Mg and/or Rare Earth) treatment + Inoculation (FeSiX-alloy treatment, with X = Ca, Ba, Sr, Ce, La, Zr etc.). Each step has specific objectives. The spheroidization of the graphite depends on the thickness of the mould and thus cooling rate is an important factor. In this work, GGG70L alloy was cast into plates that had different cross-sections. The change in the modulus has been investigated by means of microstructure and mechanical properties. It turned out that as nodule size was decreased, tensile stress and elongation at fracture were decreased however hardness was increased. It was concluded that the section thickness was an important parameter that determines the microstructure and mechanical properties of spheroidal cast irons.

References

  • [1] S. Viswanathan and A. S. M. I. H. Committee, ASM Handbook, vol. 15. ASM International, 2008.
  • [2] J. D. Mullins, Ductile Iron Data for Design Engineers, 2nd ed. Montreal, Quebec: Rio Tinto Iron & Titanium, Inc., 1998.
  • [3] D. M. Stefanescu, L. P. Dix, R. E. Ruxanda, C. Crobitt-Coburn, and T. S. Piwonka, "Cast iron properties and applications," AFS Trans., vol. 110, 2002.
  • [4] A. Javaid and K. G. Davis, "Microstructural analysis of cast iron," Microsc. Microanal., vol. 8, no. S02, pp. 1326–1327, 2002.
  • [5] O. N. Dogan, K. K. Schrems, and J. A. Hawk, "Wear resistance of cast iron alloys," Albany Research Center (ARC), Albany, OR, 2003.
  • [6] S. Bockus and G. Zaldarys, "Structural integrity of cast iron," Metalurgija, vol. 48, no. 1, 2009.
  • [7] M. Górny and E. Tyrała, "Influence of alloying elements on cast iron properties," J. Mater. Eng. Perform., vol. 22, no. 1, pp. 300–305, 2013.
  • [8] E. Guzel, C. Yuksel, Y. Bayrak, O. Sen, and A. Ekerim, "Hardness and wear behavior of cast iron," Mater. Test., vol. 56, no. 4, pp. 285–288, 2014.
  • [9] P. Minnebo, K.-F. Nilsson, and D. Blagoeva, "Fatigue performance of cast iron," J. Mater. Eng. Perform., vol. 16, no. 1, pp. 35–45, 2007.
  • [10] C. F. Yeung, H. Zhao, and W. B. Lee, "Phase transformation in cast iron," Mater. Charact., vol. 40, no. 4–5, pp. 201–208, 1998.
  • [11] K. M. Pedersen and N. S. Tiedje, "Microstructure and properties of cast iron," Mater. Charact., vol. 59, no. 8, pp. 1111–1121, 2008.
  • [12] K. M. Pedersen and N. Tiedje, "Measurement of cast iron microstructures," Measurement, vol. 41, no. 5, pp. 551–560, 2008.
  • [13] J. Y. Park, K. T. Choi, J. A. Szpunar, K. H. Oh, and H. Y. Ra, "Fracture mechanics of cast iron," Scr. Mater., vol. 46, no. 3, pp. 199–203, 2002.
  • [14] Z. Ignaszak, "Heat treatment effects on cast iron," Int. J. Cast Met. Res., vol. 16, no. 1–3, pp. 93–97, 2003.
  • [15] B. B. Kabnure and R. R. Kolhapure, "Property Optimization of Impeller Casting Using GRA," in Int. Conf. Adv. Thermal Syst. Mater. Design Eng. (ATSMDE2017), 2017.
  • [16] V. D. Shinde, B. Ravi, and K. Narasimhan, "Numerical modeling of cast iron," Int. J. Cast Met. Res., vol. 25, no. 6, pp. 364–373, 2012.
  • [17] F. Alabbasian, S. M. A. Boutorabi, and S. Kheirandish, "Mechanical behavior of cast iron," Mater. Sci. Eng. A, vol. 651, pp. 467–473, 2016.
  • [18] J. O. Choi, J. Y. Kim, C. O. Choi, J. K. Kim, and P. K. Rohatgi, "Wear mechanisms in cast iron," Mater. Sci. Eng. A, vol. 383, no. 2, pp. 323–333, 2004.
  • [19] M. Caldera, G. L. Rivera, R. E. Boeri, and J. A. Sikora, "Cast iron processing techniques," Mater. Sci. Technol., vol. 21, no. 10, pp. 1187–1191, 2005.
  • [20] J. M. Borrajo, R. A. Martínez, R. E. Boeri, and J. A. Sikora, "Microstructural changes in cast iron," ISIJ Int., vol. 42, no. 3, pp. 257–263, 2002.
  • [21] H. R. Abedi, A. Fareghi, H. Saghafian, and S. H. Kheirandish, "Wear performance of cast iron," Wear, vol. 268, no. 3–4, pp. 622–628, 2010.
  • [22] M. Shirani and G. Härkegård, "Failure analysis of cast iron components," Eng. Fail. Anal., vol. 18, no. 1, pp. 12–24, 2011.
  • [23] I. Syafa’at, F. Hilmy, and M. Tauviqirrahman, "Thermal stability of cast iron," J. Phys. Sci., vol. 29, 2018.
  • [24] M. A. Azeem, M. K. Bjerre, R. C. Atwood, N. Tiedje, and P. D. Lee, "X-ray analysis of cast iron structures," Acta Mater., vol. 155, pp. 393–401, 2018.
  • [25] N. S. Tiedje, M. K. Bjerre, M. A. Azeem, and J. H. Hattel, "Cast iron properties under various cooling conditions," Trans. Indian Inst. Met., vol. 71, no. 11, pp. 2699–2705, 2018.
  • [26] R. Saito, T. Maruyama, T. Nakamura, H. Yanagitani, T. Sakai, and K. Nakamoto, "Microstructural analysis of cast iron," Int. J. Met., pp. 1–7, 2018.
  • [27] A. D. Mohammed and M. Kachit, "Mechanical testing of cast iron," Int. J. Appl. Eng. Res., vol. 12, no. 5, pp. 656–663, 2017.
  • [28] S. N. Lekakh, "Metallurgical processing of cast iron," Metall. Mater. Trans. B, vol. 50, no. 2, pp. 890–902, 2019.
  • [29] S. N. Lekakh, "Influence of heat treatment on cast iron," ISIJ Int., vol. 56, no. 5, pp. 812–819, 2016.
  • [30] D. M. Stefanescu, G. Alonso, P. Larranaga, and R. Suarez, "Advanced cast iron processing techniques," Acta Mater., vol. 103, pp. 103–114, 2016.
There are 30 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Article
Authors

Murat Çolak 0000-0002-8255-5987

Oğuzhan Çolak 0009-0003-5562-4697

Yasemin Tabak 0000-0002-4912-8828

Submission Date February 26, 2025
Acceptance Date April 9, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Çolak, M., Çolak, O., & Tabak, Y. (2025). Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron. Bayburt Üniversitesi Fen Bilimleri Dergisi, 8(1), 44-53. https://doi.org/10.55117/bufbd.1646880
AMA Çolak M, Çolak O, Tabak Y. Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron. Bayburt Üniversitesi Fen Bilimleri Dergisi. June 2025;8(1):44-53. doi:10.55117/bufbd.1646880
Chicago Çolak, Murat, Oğuzhan Çolak, and Yasemin Tabak. “Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron”. Bayburt Üniversitesi Fen Bilimleri Dergisi 8, no. 1 (June 2025): 44-53. https://doi.org/10.55117/bufbd.1646880.
EndNote Çolak M, Çolak O, Tabak Y (June 1, 2025) Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron. Bayburt Üniversitesi Fen Bilimleri Dergisi 8 1 44–53.
IEEE M. Çolak, O. Çolak, and Y. Tabak, “Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron”, Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 1, pp. 44–53, 2025, doi: 10.55117/bufbd.1646880.
ISNAD Çolak, Murat et al. “Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron”. Bayburt Üniversitesi Fen Bilimleri Dergisi 8/1 (June2025), 44-53. https://doi.org/10.55117/bufbd.1646880.
JAMA Çolak M, Çolak O, Tabak Y. Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2025;8:44–53.
MLA Çolak, Murat et al. “Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron”. Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 1, 2025, pp. 44-53, doi:10.55117/bufbd.1646880.
Vancouver Çolak M, Çolak O, Tabak Y. Evaluation of Casting Modulus on the Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2025;8(1):44-53.

Indexing