Research Article
BibTex RIS Cite

Hidrotermal Yöntem ile WS2 Sentezi ve Karakterizasyonu

Year 2020, Volume: 3 Issue: 1, 16 - 22, 30.06.2020

Abstract

Özet

Kritik bir öneme sahip olan hidrotermal yöntem kullanılarak sentezlenen Geçiş Metali Dikalkojenitlere (TMDs) bağlı olarak enerji depolama aygıtları, fotovoltaikler, elektro katalizler, elektronik aygıtlar, sensör ve biyomedikal uygulamalarından dolayı, İki boyutlu (2D) tabakalı bileşenlerin araştırılmasını uzun süredir ilgi çekmektedir. Bu yüzden, WS2 (Tungsten disülfit) herhangi bir Sürfaktant kullanmadan tek basamakta hidrotermal yöntem ile nano flower yapısında sentezlendi. WS2 sentezinde Sıcaklık ve NaWO4.2H2O/CH3CSNH2 Stokiyometrik oranın etkisine araştırıldı. Bu sebepten, uygun şartlar belirlendi. Sentezlenen örneğin morfolojisi ve kristal yapı karakteristikleri (XRD, SEM ve EDAX) de bu çalışmada karakterize edildi.

Supporting Institution

BAYBURT ÜNİVERSİTESİ

Thanks

Bu Çalışmada analiz konusunda bizlere yardımcı olan Merkezi Araştırma laboratuvarı Uygulama ve Araştırma Merkezi (BUMER) Yönetimi ve çalışanlarına teşekkürü bir borç bilirim. Ayrıca deneysel çalışmalarımızda bizlere yardımcı olan Doç. Dr. Mehmet Emin ARZUTUĞ’a, Doktor Öğretim Üyesi Yaşar Özkan YEŞİLBAĞ’a ve Doktor Öğretim Üyesi Arzu KANCA’ya teşekkür ederim.

References

  • [1] R. Lv et al., "Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets," Accounts of chemical research, vol. 48, no. 1, pp. 56-64, 2014.
  • [2] C. Tan and H. Zhang, "Two-dimensional transition metal dichalcogenide nanosheet-based composites," Chemical Society Reviews, vol. 44, no. 9, pp. 2713-2731, 2015.
  • [3] R. Lv et al., "Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more," Nano Today, vol. 10, no. 5, pp. 559-592, 2015, doi: 10.1016/j.nantod.2015.07.004.
  • [4] J. Luo, S. Zhang, M. Sun, L. Yang, S. Luo, and J. C. Crittenden, "A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface," ACS nano, vol. 13, no. 9, pp. 9811-9840, 2019. [5] X. Yu, G. Zhou, and Y. Cui, "Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer," ACS applied materials & interfaces, vol. 11, no. 3, pp. 3080-3086, 2018.
  • [6] W. Cho et al., "Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm," Chemistry of Materials, vol. 30, no. 20, pp. 6957-6960, 2018.
  • [7] S. Liu, D. Li, G. Zhang, D. Sun, J. Zhou, and H. Song, "Two-Dimensional NiSe2/N-Rich Carbon Nanocomposites Derived from Ni-Hexamine Frameworks for Superb Na-Ion Storage," ACS applied materials & interfaces, vol. 10, no. 40, pp. 34193-34201, 2018.
  • [8] S. Karunakaran, S. Pandit, B. Basu, and M. De, "Simultaneous Exfoliation and Functionalization of 2H-MoS2 by Thiolated Surfactants: Applications in Enhanced Antibacterial Activity," Journal of the American Chemical Society, vol. 140, no. 39, pp. 12634-12644, 2018.
  • [9] W. Wang et al., "Ultrathin Nanosheets Assembled Hierarchical Co/NiS x@ C Hollow Spheres for Reversible Lithium Storage," ACS Applied Nano Materials, vol. 1, no. 7, pp. 3435-3445, 2018.
  • [10] N. Dhenadhayalan, T.-W. Lin, H.-L. Lee, and K.-C. Lin, "Multisensing Capability of MoSe2 Quantum Dots by Tuning Surface Functional Groups," ACS Applied Nano Materials, vol. 1, no. 7, pp. 3453-3463, 2018.
  • [11] M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, "Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control," Chemical reviews, vol. 118, no. 13, pp. 6236-6296, 2018.
  • [12] S. A. Han, R. Bhatia, and S.-W. Kim, "Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides," Nano Convergence, vol. 2, no. 1, p. 17, 2015.
  • [13] M. Pumera and A. H. Loo, "Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing," TrAC Trends in Analytical Chemistry, vol. 61, pp. 49-53, 2014, doi: 10.1016/j.trac.2014.05.009.
  • [14] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nature chemistry, vol. 5, no. 4, p. 263, 2013.
  • [15] M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, "Two‐Dimensional Materials: 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials (Adv. Mater. 7/2014)," Advanced Materials, vol. 26, no. 7, pp. 982-982, 2014.
  • [16] S. A. Han, R. Bhatia, and S.-W. Kim, "Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides," Nano Convergence, vol. 2, no. 1, 2015, doi: 10.1186/s40580-015-0048-4.
  • [17] F. Schwierz, "Nanoelectronics: Flat transistors get off the ground," Nature nanotechnology, vol. 6, no. 3, p. 135, 2011.
  • [18] Z. Chen, A. J. Forman, and T. F. Jaramillo, "Bridging the gap between bulk and nanostructured photoelectrodes: the impact of surface states on the electrocatalytic and photoelectrochemical properties of MoS2," The Journal of Physical Chemistry C, vol. 117, no. 19, pp. 9713-9722, 2013.
  • [19] M. Pumera, Z. Sofer, and A. Ambrosi, "Layered transition metal dichalcogenides for electrochemical energy generation and storage," Journal of Materials Chemistry A, Article vol. 2, no. 24, pp. 8981-8987, 2014, doi: 10.1039/c4ta00652f.
  • [20] M. Wang, G. Li, H. Xu, Y. Qian, and J. Yang, "Enhanced Lithium Storage Performances of Hierarchical Hollow MoS2 Nanoparticles Assembled from Nanosheets," ACS Applied Materials & Interfaces, vol. 5, no. 3, pp. 1003-1008, 2013/02/13 2013, doi: 10.1021/am3026954.
  • [21] D. Merki, S. Fierro, H. Vrubel, and X. Hu, "Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water," Chemical Science, 10.1039/C1SC00117E vol. 2, no. 7, pp. 1262-1267, 2011, doi: 10.1039/C1SC00117E.
  • [22] M. R. Loghman-Estarki, H. Bastami, and F. Davar, "Synthesis of one-dimensional MS (M = Zn, Cd, and Pb) nanostructure by MAA assisted hydrothermal method: A review," Polyhedron, vol. 127, pp. 107-125, 2017, doi: 10.1016/j.poly.2017.01.057.
  • [23] K. Sue et al., "Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method," Green Chemistry, vol. 8, no. 7, pp. 634-638, 2006.
  • [24] X. Li and H. Zhu, "Two-dimensional MoS2: Properties, preparation, and applications," Journal of Materiomics, vol. 1, no. 1, pp. 33-44, 2015, doi: 10.1016/j.jmat.2015.03.003.
  • [25] X. Chen, H. Li, S. Wang, M. Yang, and Y. Qi, "Biomolecule-assisted hydrothermal synthesis of molybdenum disulfide microspheres with nanorods," Materials Letters, vol. 66, no. 1, pp. 22-24, 2012, doi: 10.1016/j.matlet.2011.03.056.
Year 2020, Volume: 3 Issue: 1, 16 - 22, 30.06.2020

Abstract

References

  • [1] R. Lv et al., "Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets," Accounts of chemical research, vol. 48, no. 1, pp. 56-64, 2014.
  • [2] C. Tan and H. Zhang, "Two-dimensional transition metal dichalcogenide nanosheet-based composites," Chemical Society Reviews, vol. 44, no. 9, pp. 2713-2731, 2015.
  • [3] R. Lv et al., "Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more," Nano Today, vol. 10, no. 5, pp. 559-592, 2015, doi: 10.1016/j.nantod.2015.07.004.
  • [4] J. Luo, S. Zhang, M. Sun, L. Yang, S. Luo, and J. C. Crittenden, "A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface," ACS nano, vol. 13, no. 9, pp. 9811-9840, 2019. [5] X. Yu, G. Zhou, and Y. Cui, "Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer," ACS applied materials & interfaces, vol. 11, no. 3, pp. 3080-3086, 2018.
  • [6] W. Cho et al., "Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm," Chemistry of Materials, vol. 30, no. 20, pp. 6957-6960, 2018.
  • [7] S. Liu, D. Li, G. Zhang, D. Sun, J. Zhou, and H. Song, "Two-Dimensional NiSe2/N-Rich Carbon Nanocomposites Derived from Ni-Hexamine Frameworks for Superb Na-Ion Storage," ACS applied materials & interfaces, vol. 10, no. 40, pp. 34193-34201, 2018.
  • [8] S. Karunakaran, S. Pandit, B. Basu, and M. De, "Simultaneous Exfoliation and Functionalization of 2H-MoS2 by Thiolated Surfactants: Applications in Enhanced Antibacterial Activity," Journal of the American Chemical Society, vol. 140, no. 39, pp. 12634-12644, 2018.
  • [9] W. Wang et al., "Ultrathin Nanosheets Assembled Hierarchical Co/NiS x@ C Hollow Spheres for Reversible Lithium Storage," ACS Applied Nano Materials, vol. 1, no. 7, pp. 3435-3445, 2018.
  • [10] N. Dhenadhayalan, T.-W. Lin, H.-L. Lee, and K.-C. Lin, "Multisensing Capability of MoSe2 Quantum Dots by Tuning Surface Functional Groups," ACS Applied Nano Materials, vol. 1, no. 7, pp. 3453-3463, 2018.
  • [11] M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, "Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control," Chemical reviews, vol. 118, no. 13, pp. 6236-6296, 2018.
  • [12] S. A. Han, R. Bhatia, and S.-W. Kim, "Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides," Nano Convergence, vol. 2, no. 1, p. 17, 2015.
  • [13] M. Pumera and A. H. Loo, "Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing," TrAC Trends in Analytical Chemistry, vol. 61, pp. 49-53, 2014, doi: 10.1016/j.trac.2014.05.009.
  • [14] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nature chemistry, vol. 5, no. 4, p. 263, 2013.
  • [15] M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, "Two‐Dimensional Materials: 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials (Adv. Mater. 7/2014)," Advanced Materials, vol. 26, no. 7, pp. 982-982, 2014.
  • [16] S. A. Han, R. Bhatia, and S.-W. Kim, "Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides," Nano Convergence, vol. 2, no. 1, 2015, doi: 10.1186/s40580-015-0048-4.
  • [17] F. Schwierz, "Nanoelectronics: Flat transistors get off the ground," Nature nanotechnology, vol. 6, no. 3, p. 135, 2011.
  • [18] Z. Chen, A. J. Forman, and T. F. Jaramillo, "Bridging the gap between bulk and nanostructured photoelectrodes: the impact of surface states on the electrocatalytic and photoelectrochemical properties of MoS2," The Journal of Physical Chemistry C, vol. 117, no. 19, pp. 9713-9722, 2013.
  • [19] M. Pumera, Z. Sofer, and A. Ambrosi, "Layered transition metal dichalcogenides for electrochemical energy generation and storage," Journal of Materials Chemistry A, Article vol. 2, no. 24, pp. 8981-8987, 2014, doi: 10.1039/c4ta00652f.
  • [20] M. Wang, G. Li, H. Xu, Y. Qian, and J. Yang, "Enhanced Lithium Storage Performances of Hierarchical Hollow MoS2 Nanoparticles Assembled from Nanosheets," ACS Applied Materials & Interfaces, vol. 5, no. 3, pp. 1003-1008, 2013/02/13 2013, doi: 10.1021/am3026954.
  • [21] D. Merki, S. Fierro, H. Vrubel, and X. Hu, "Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water," Chemical Science, 10.1039/C1SC00117E vol. 2, no. 7, pp. 1262-1267, 2011, doi: 10.1039/C1SC00117E.
  • [22] M. R. Loghman-Estarki, H. Bastami, and F. Davar, "Synthesis of one-dimensional MS (M = Zn, Cd, and Pb) nanostructure by MAA assisted hydrothermal method: A review," Polyhedron, vol. 127, pp. 107-125, 2017, doi: 10.1016/j.poly.2017.01.057.
  • [23] K. Sue et al., "Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method," Green Chemistry, vol. 8, no. 7, pp. 634-638, 2006.
  • [24] X. Li and H. Zhu, "Two-dimensional MoS2: Properties, preparation, and applications," Journal of Materiomics, vol. 1, no. 1, pp. 33-44, 2015, doi: 10.1016/j.jmat.2015.03.003.
  • [25] X. Chen, H. Li, S. Wang, M. Yang, and Y. Qi, "Biomolecule-assisted hydrothermal synthesis of molybdenum disulfide microspheres with nanorods," Materials Letters, vol. 66, no. 1, pp. 22-24, 2012, doi: 10.1016/j.matlet.2011.03.056.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Adem Kara 0000-0002-1034-0434

Mehmet Ertugrul

Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Kara, A., & Ertugrul, M. (2020). Hidrotermal Yöntem ile WS2 Sentezi ve Karakterizasyonu. Bayburt Üniversitesi Fen Bilimleri Dergisi, 3(1), 16-22.
AMA Kara A, Ertugrul M. Hidrotermal Yöntem ile WS2 Sentezi ve Karakterizasyonu. Bayburt Üniversitesi Fen Bilimleri Dergisi. June 2020;3(1):16-22.
Chicago Kara, Adem, and Mehmet Ertugrul. “Hidrotermal Yöntem Ile WS2 Sentezi Ve Karakterizasyonu”. Bayburt Üniversitesi Fen Bilimleri Dergisi 3, no. 1 (June 2020): 16-22.
EndNote Kara A, Ertugrul M (June 1, 2020) Hidrotermal Yöntem ile WS2 Sentezi ve Karakterizasyonu. Bayburt Üniversitesi Fen Bilimleri Dergisi 3 1 16–22.
IEEE A. Kara and M. Ertugrul, “Hidrotermal Yöntem ile WS2 Sentezi ve Karakterizasyonu”, Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 3, no. 1, pp. 16–22, 2020.
ISNAD Kara, Adem - Ertugrul, Mehmet. “Hidrotermal Yöntem Ile WS2 Sentezi Ve Karakterizasyonu”. Bayburt Üniversitesi Fen Bilimleri Dergisi 3/1 (June 2020), 16-22.
JAMA Kara A, Ertugrul M. Hidrotermal Yöntem ile WS2 Sentezi ve Karakterizasyonu. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2020;3:16–22.
MLA Kara, Adem and Mehmet Ertugrul. “Hidrotermal Yöntem Ile WS2 Sentezi Ve Karakterizasyonu”. Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 3, no. 1, 2020, pp. 16-22.
Vancouver Kara A, Ertugrul M. Hidrotermal Yöntem ile WS2 Sentezi ve Karakterizasyonu. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2020;3(1):16-22.

Indexing