Review
BibTex RIS Cite

Su, Tuz, Hipokloröz Asit ve Enfeksiyonlardan Korunma

Year 2020, Volume: 3 Issue: 2, 154 - 160, 31.12.2020

Abstract

Canlılar için hayatın devamı, belirli kimyasalların uygun oranlarda ve uygun zamanlarda alımına bağlıdır. Bu kimyasallar; gıdalar, su ve hava ile alınabilmektedir. Dünyanın büyük bir bölümü su içerdiği gibi canlı organizmalarda da yüksek oranda su bulunmaktadır. Organizmalarda yüksek oranda suyun varlığı kimyasal reaksiyonların büyük bir kısmının da sulu çözeltilerde olmasını sağlamaktadır. Canlılar kendi organizmasının bütünlüğünü koruma adına farklı savunma mekanizmaları kullanmaktadır. Enfeksiyon etkenlerinin yok edilmesinde antimikrobiyal etkinlik açısıdan savunma hücreleri önemli bir yere sahiptir. Nötrofiller, myeloperoksidaz aracılığı ile Hipokloröz asit (HOCl) oluşturarak antimikrobiyal aktivite göstermektedir. Savunma sisteminin doğal olarak ürettiği HOCl, yapay olarak da üretilerek temizlik ve dezenfeksiyon amacıyla kullanılabilmektedir. HOCl; su ve NaCl’nin elektrolizi ile üretilebildiği için ekonomiktir. Temizlik ve dezenfeksiyonda maksimum antimikrobiyal etkiye pH=3-6 seviyelerinde ulaşmaktadır. HOCl sulu çözelti içerisinde, H+ ve OClˉolarak ayrışır ve proteinleri denatüre eder. HOCl; kloraminler ve azotlu radikaller oluşturarak çift sarmallı DNA’ları parçalayarak virüsleri zararsız hale getirmektedir. HOCl, Covid-19 dâhil geniş bir tayfta virüslerin yok edilmesinde kullanım alanı bulan zayıf ama etkili bir asittir. Yapılan çalışmalar ışığında HOCl, gelecekte özellikle medikal sektöründe olmak üzere daha birçok alan da kullanım alanı bulacağı öngörülmektedir.

References

  • [1] Ulusoy, K., (2007), Küresel Ticaretin Son Hedefi: Su Pazarı, Kristal Kitaplar Yayınevi, Ankara.
  • [2] TEPE, A. Ü., YETİŞKEN, Y., & GÜLSEVİNÇLER, E. (2017). Tuzlu Sudan Güneş Destekli Isı Pompası ile İçme Suyu Elde Edilmesi.
  • [3] Ergin, Z. (1988). Tuzun üretim teknolojisi ve insan sağlığındaki yeri. Bilimsel Madencilik Dergisi, 27(1), 9-30.
  • [4] ARIKAN, S. (1997). Temizlik, Dezenfeksiyon ve Sterilizasyon.
  • [5] Dolapçı, İ. (2016). Sterilizasyon ve Dezenfeksiyon.
  • [6] Nelerdir, T. (2005). “Klor Verici Dezenfektanların Kullanım İlkeleri Hangi Şartlarda, Hangi Amaçlarla Kullanılır?”.
  • [7] Turantaş, F., 2016, Gıda Sanayiinde Elektrolize Su Uygulamalarının Antimikrobiyal Etkileri, Dünya GIDA, 2017-9.
  • [8] Huang, Y.R., Hung, Y.C., Hsu, S.Y., Huang, Y.W. and Hwang, D.F., 2008, Application Of Electrolyzed Water İn The Food İndustry, Food Control, 19(4), 329-345p.
  • [9] Ayebah, B. and Hung, Y.C., 2005, Electrolyzed Water And Its Corrosiveness On Various Surface Materials Commonly Found İn Food Processing Facilities, Journal Of Food Process Engineering, 28(3), 247-264p. [10] Sakurai, Y., Nakatsu, M., Sato, Y. and Sato, K., 2003, Endoscope Contamination From HBV- And Hcvpositive Patients And Evaluation Of A Cleaning/Disinfecting Method Using Strongly Acidic Electrolyzed Water, Digest Endoscopy, 15, 19-24.
  • [11] Mori, Y., Komatsu, S. and Hata, Y., 1997, Toxicity Of Electrolyzed Strong Acid Aqueous Solution-Subacute Toxicity Test And Effect On Oral Tissue İn Rats, Odontology, 84, 619-626p.
  • [12] Hsu, S.Y., 2005, Effects Of Flow Rate, Temperature And Salt Concentration On Chemical And Physical Properties Of Electrolyzed Oxidizing Water, J Of Food Engineer, 66, 171-176p.
  • [13] Huang, Y.R., Hung, Y.C., Hsu, S.Y., Huang, Y.W. and Hwang, D.F., 2008, Application Of Electrolyzed Water İn The Food İndustry, Food Control, 19(4), 329-345p.
  • [14] Tosa, N. and Yamasaki, Y., 2000, Effect Of Organic Substances On The Residual Chlorine Contained İn The Strong Acidic Electrolyzed Water, J Of The Japanese Soc For Food Sci And Technol., 47(4), 287-295p.
  • [15] Kettle AJ,Winterbourn CC, Myeloperoxidase: A key regulator of neutrophil oxidant production. Redox Rep 3:3, 1997.
  • [16] Wang L, Bassiri M, Najafi R, et al: Hypochlorous acid as a potential wound care agent: Part I. Stabilized hypochlorous acid: A component of the inorganic armamentarium of innate immunity. J Burns Wounds 6:e5, 2007.
  • [17] Winter J, Ilbert M, Graf PCF, et al: Bleach activates a redoxregulated chaperone by oxidative protein unfolding. Cell 135:691, 2008.
  • [18] Rossi-Fedele G, Dogramaci EJ, Steier L, de Figueiredo JA: Some factors influencing the stability of Sterilox( ), a superoxidised water. Br Dent J 210:E23, 2011.
  • [19] Nowell LH, Hoign e J: Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—I. Degradation rates. Water Res 26:593, 1992
  • [20] RutalaWA, Cole EC, Thomann CA,Weber DJ: Stability and bactericidal activity of chlorine solutions. Infect Control Hosp Epidemiol 19:323, 1998.
  • [21] Ishihara M, Murakami K, Fukuda K, et al: Stability of weakly acidic hypochlorous acid solution with microbicidal activity. Biocontrol Sci 22:223, 2017.
  • [22] Kampf G, Todt D, Pfaender S, Steinmann E: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Inf 104:246, 2020.
  • [23] ParkGW, Boston DM, Kase JA, et al: Evaluation of liquid- and fogbased application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73:4463, 2007.
  • [24] Winterbourn, C. C., Kettle, A. J. (2013) Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18, 642–660.
  • [25] Hurst, J. K. (2012) What really happens in the neutrophil phagosome? Free Radic. Biol. Med. 53, 508–520.
  • [26] Davies, M. J. (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J. Clin. Biochem. Nutr. 48, 8–19.
  • [27] Pattison, D. I., Hawkins, C. L., Davies, M. J. (2009) What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach. Chem. Res. Toxicol. 22, 807–817.
  • [28] Pattison, D. I., Davies, M. J. (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464.
  • [29] Deborde, M., von Gunten, U. (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Res. 42, 13–51.
  • [30] Peskin, A. V., Turner, R., Maghzal, G. J., Winterbourn, C. C., Kettle, A. J. (2009) Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry 48, 10175–10182.
  • [31] Ronsein, G. E., Winterbourn, C. C., Di Mascio, P., Kettle, A. J. (2014) Cross-linking methionine and amine residues with reactive halogen species. Free Radic. Biol. Med. 70, 278–287.
  • [32] Rosen, H., Klebanoff, S. J., Wang, Y., Brot, N., Heinecke, J. W., Fu, X. (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc. Natl. Acad. Sci. USA 106, 18686–18691.
  • [33] Hurst, J. K., Albrich, J. M., Green, T. R., Rosen, H., Klebanoff, S. (1984) Myeloperoxidase-dependent fluorescein chlorination by stimulated neutrophils. J. Biol. Chem. 259, 4812–4821.
  • [34] Nauseef, W. M. (2014) Myeloperoxidase in human neutrophil host defence. Cell. Microbiol. 16, 1146–1155.
  • [35] Imlay, J. A. (2003) Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418.
  • [36] Albrich, J. M., Hurst, J. K. (1982) Oxidative inactivation of Escherichia coli by hypochlorous acid. Rates and differentiation of respiratory from other reaction sites. FEBS Lett. 144, 157–161.
  • [37] Lymar, S. V., Hurst, J. K. (1995) Role of compartmentation in promoting toxicity of leukocyte-generated strong oxidants. Chem. Res. Toxicol. 8, 833–840.
  • [38] Kampf G, Todt D, Pfaender S, Steinmann E: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Inf 104:246, 2020.
  • [39] ParkGW, Boston DM, Kase JA, et al: Evaluation of liquid- and fogbased application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73:4463, 2007.
  • [40] Beuchat LR. Use of sanitizers in raw fruit and vegetable processing. In: Maryland. An Aspen Publication, 2000.
  • [41] Schmidt RH, Rodrick GE, Wiley J. Food Safety Handbook: Wiley Online Library, 2003.
  • [42] Kaçmaz B, Sultan N. Dezenfektanlarin mikroorganizmalara karşi etkinliğinin temiz ve kirli yüzeylerde değerlendirilmesi. Türk Hij Den Biyol Derg, 2005; 62(1,2,3): 27-34.
  • [43] Stroman DW, Keri Mintun K, Epstein AB, et al: Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin Ophthalmol 11:707, 2017
  • [44] Chen C-J, Chen C-C, Ding S-J: Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int J Mol Sci 17:1161, 2016
  • [45] Lee SH, Choi BK: Antibacterial effect of electrolyzed water on oral bacteria. J Microbiol 44:417, 2006
  • [46] Kubota A, Goda T, Tsuru T, et al: Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis. Surg Today 45:876, 2015
  • [47] Hiebert JM, Robson MC: The immediate and delayed postdebridement effects on tissue bacterial wound counts of hypochlorous acid versus saline irrigation in chronic wounds. Eplasty 16:e32, 2016
  • [48] Wolfe MK, Gallandat K, Daniels K, et al: Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water. PLoS One 12:e0172734, 2017
  • [49] Overholt B, Reynolds K, Wheeler D: 1151. A safer, more effective method for cleaning and disinfecting GI endoscopic procedure rooms. Open Forum Infect Dis 5(Suppl 1):S346, 2018
  • [50] Veasey S, Muriana PM: Evaluation of electrolytically-generated hypochlorous acid (‘electrolyzed water’) for sanitation of meat and meat-contact surfaces. Foods 5:42, 2016
  • [51] Morita C, Nishida T, Ito K: Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight. Arch Oral Biol 56:359, 2011
  • [52] Stroman DW, Keri Mintun K, Epstein AB, et al: Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin Ophthalmol 11:707, 2017
  • [53] Su Y-C, Liu C, Hung Y-C: Electrolyzed water: Principles and applications, in Zhu P (ed): New Biocides Development, the Combined Approach of Chemistry and Microbiology. Washington, DC, American Chemical Society, 2007, pp 309–321
  • [54] ParkGW, Boston DM, Kase JA, et al: Evaluation of liquid- and fogbased application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73:4463, 2007
  • [55] McRay RJ, Dineen P, Kitzke ED: Disinfectant fogging techniques. Soap Chem Spec 40:112, 1964
  • [56] Zhao Y, Xin H, Zhao D, et al: Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house. Ann Agric Environ Med 21:249, 2014

Water, Salt, Hypochlorous Acid and Infection Protection

Year 2020, Volume: 3 Issue: 2, 154 - 160, 31.12.2020

Abstract

References

  • [1] Ulusoy, K., (2007), Küresel Ticaretin Son Hedefi: Su Pazarı, Kristal Kitaplar Yayınevi, Ankara.
  • [2] TEPE, A. Ü., YETİŞKEN, Y., & GÜLSEVİNÇLER, E. (2017). Tuzlu Sudan Güneş Destekli Isı Pompası ile İçme Suyu Elde Edilmesi.
  • [3] Ergin, Z. (1988). Tuzun üretim teknolojisi ve insan sağlığındaki yeri. Bilimsel Madencilik Dergisi, 27(1), 9-30.
  • [4] ARIKAN, S. (1997). Temizlik, Dezenfeksiyon ve Sterilizasyon.
  • [5] Dolapçı, İ. (2016). Sterilizasyon ve Dezenfeksiyon.
  • [6] Nelerdir, T. (2005). “Klor Verici Dezenfektanların Kullanım İlkeleri Hangi Şartlarda, Hangi Amaçlarla Kullanılır?”.
  • [7] Turantaş, F., 2016, Gıda Sanayiinde Elektrolize Su Uygulamalarının Antimikrobiyal Etkileri, Dünya GIDA, 2017-9.
  • [8] Huang, Y.R., Hung, Y.C., Hsu, S.Y., Huang, Y.W. and Hwang, D.F., 2008, Application Of Electrolyzed Water İn The Food İndustry, Food Control, 19(4), 329-345p.
  • [9] Ayebah, B. and Hung, Y.C., 2005, Electrolyzed Water And Its Corrosiveness On Various Surface Materials Commonly Found İn Food Processing Facilities, Journal Of Food Process Engineering, 28(3), 247-264p. [10] Sakurai, Y., Nakatsu, M., Sato, Y. and Sato, K., 2003, Endoscope Contamination From HBV- And Hcvpositive Patients And Evaluation Of A Cleaning/Disinfecting Method Using Strongly Acidic Electrolyzed Water, Digest Endoscopy, 15, 19-24.
  • [11] Mori, Y., Komatsu, S. and Hata, Y., 1997, Toxicity Of Electrolyzed Strong Acid Aqueous Solution-Subacute Toxicity Test And Effect On Oral Tissue İn Rats, Odontology, 84, 619-626p.
  • [12] Hsu, S.Y., 2005, Effects Of Flow Rate, Temperature And Salt Concentration On Chemical And Physical Properties Of Electrolyzed Oxidizing Water, J Of Food Engineer, 66, 171-176p.
  • [13] Huang, Y.R., Hung, Y.C., Hsu, S.Y., Huang, Y.W. and Hwang, D.F., 2008, Application Of Electrolyzed Water İn The Food İndustry, Food Control, 19(4), 329-345p.
  • [14] Tosa, N. and Yamasaki, Y., 2000, Effect Of Organic Substances On The Residual Chlorine Contained İn The Strong Acidic Electrolyzed Water, J Of The Japanese Soc For Food Sci And Technol., 47(4), 287-295p.
  • [15] Kettle AJ,Winterbourn CC, Myeloperoxidase: A key regulator of neutrophil oxidant production. Redox Rep 3:3, 1997.
  • [16] Wang L, Bassiri M, Najafi R, et al: Hypochlorous acid as a potential wound care agent: Part I. Stabilized hypochlorous acid: A component of the inorganic armamentarium of innate immunity. J Burns Wounds 6:e5, 2007.
  • [17] Winter J, Ilbert M, Graf PCF, et al: Bleach activates a redoxregulated chaperone by oxidative protein unfolding. Cell 135:691, 2008.
  • [18] Rossi-Fedele G, Dogramaci EJ, Steier L, de Figueiredo JA: Some factors influencing the stability of Sterilox( ), a superoxidised water. Br Dent J 210:E23, 2011.
  • [19] Nowell LH, Hoign e J: Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—I. Degradation rates. Water Res 26:593, 1992
  • [20] RutalaWA, Cole EC, Thomann CA,Weber DJ: Stability and bactericidal activity of chlorine solutions. Infect Control Hosp Epidemiol 19:323, 1998.
  • [21] Ishihara M, Murakami K, Fukuda K, et al: Stability of weakly acidic hypochlorous acid solution with microbicidal activity. Biocontrol Sci 22:223, 2017.
  • [22] Kampf G, Todt D, Pfaender S, Steinmann E: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Inf 104:246, 2020.
  • [23] ParkGW, Boston DM, Kase JA, et al: Evaluation of liquid- and fogbased application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73:4463, 2007.
  • [24] Winterbourn, C. C., Kettle, A. J. (2013) Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18, 642–660.
  • [25] Hurst, J. K. (2012) What really happens in the neutrophil phagosome? Free Radic. Biol. Med. 53, 508–520.
  • [26] Davies, M. J. (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J. Clin. Biochem. Nutr. 48, 8–19.
  • [27] Pattison, D. I., Hawkins, C. L., Davies, M. J. (2009) What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach. Chem. Res. Toxicol. 22, 807–817.
  • [28] Pattison, D. I., Davies, M. J. (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464.
  • [29] Deborde, M., von Gunten, U. (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Res. 42, 13–51.
  • [30] Peskin, A. V., Turner, R., Maghzal, G. J., Winterbourn, C. C., Kettle, A. J. (2009) Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry 48, 10175–10182.
  • [31] Ronsein, G. E., Winterbourn, C. C., Di Mascio, P., Kettle, A. J. (2014) Cross-linking methionine and amine residues with reactive halogen species. Free Radic. Biol. Med. 70, 278–287.
  • [32] Rosen, H., Klebanoff, S. J., Wang, Y., Brot, N., Heinecke, J. W., Fu, X. (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc. Natl. Acad. Sci. USA 106, 18686–18691.
  • [33] Hurst, J. K., Albrich, J. M., Green, T. R., Rosen, H., Klebanoff, S. (1984) Myeloperoxidase-dependent fluorescein chlorination by stimulated neutrophils. J. Biol. Chem. 259, 4812–4821.
  • [34] Nauseef, W. M. (2014) Myeloperoxidase in human neutrophil host defence. Cell. Microbiol. 16, 1146–1155.
  • [35] Imlay, J. A. (2003) Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418.
  • [36] Albrich, J. M., Hurst, J. K. (1982) Oxidative inactivation of Escherichia coli by hypochlorous acid. Rates and differentiation of respiratory from other reaction sites. FEBS Lett. 144, 157–161.
  • [37] Lymar, S. V., Hurst, J. K. (1995) Role of compartmentation in promoting toxicity of leukocyte-generated strong oxidants. Chem. Res. Toxicol. 8, 833–840.
  • [38] Kampf G, Todt D, Pfaender S, Steinmann E: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Inf 104:246, 2020.
  • [39] ParkGW, Boston DM, Kase JA, et al: Evaluation of liquid- and fogbased application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73:4463, 2007.
  • [40] Beuchat LR. Use of sanitizers in raw fruit and vegetable processing. In: Maryland. An Aspen Publication, 2000.
  • [41] Schmidt RH, Rodrick GE, Wiley J. Food Safety Handbook: Wiley Online Library, 2003.
  • [42] Kaçmaz B, Sultan N. Dezenfektanlarin mikroorganizmalara karşi etkinliğinin temiz ve kirli yüzeylerde değerlendirilmesi. Türk Hij Den Biyol Derg, 2005; 62(1,2,3): 27-34.
  • [43] Stroman DW, Keri Mintun K, Epstein AB, et al: Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin Ophthalmol 11:707, 2017
  • [44] Chen C-J, Chen C-C, Ding S-J: Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int J Mol Sci 17:1161, 2016
  • [45] Lee SH, Choi BK: Antibacterial effect of electrolyzed water on oral bacteria. J Microbiol 44:417, 2006
  • [46] Kubota A, Goda T, Tsuru T, et al: Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis. Surg Today 45:876, 2015
  • [47] Hiebert JM, Robson MC: The immediate and delayed postdebridement effects on tissue bacterial wound counts of hypochlorous acid versus saline irrigation in chronic wounds. Eplasty 16:e32, 2016
  • [48] Wolfe MK, Gallandat K, Daniels K, et al: Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water. PLoS One 12:e0172734, 2017
  • [49] Overholt B, Reynolds K, Wheeler D: 1151. A safer, more effective method for cleaning and disinfecting GI endoscopic procedure rooms. Open Forum Infect Dis 5(Suppl 1):S346, 2018
  • [50] Veasey S, Muriana PM: Evaluation of electrolytically-generated hypochlorous acid (‘electrolyzed water’) for sanitation of meat and meat-contact surfaces. Foods 5:42, 2016
  • [51] Morita C, Nishida T, Ito K: Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight. Arch Oral Biol 56:359, 2011
  • [52] Stroman DW, Keri Mintun K, Epstein AB, et al: Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin Ophthalmol 11:707, 2017
  • [53] Su Y-C, Liu C, Hung Y-C: Electrolyzed water: Principles and applications, in Zhu P (ed): New Biocides Development, the Combined Approach of Chemistry and Microbiology. Washington, DC, American Chemical Society, 2007, pp 309–321
  • [54] ParkGW, Boston DM, Kase JA, et al: Evaluation of liquid- and fogbased application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73:4463, 2007
  • [55] McRay RJ, Dineen P, Kitzke ED: Disinfectant fogging techniques. Soap Chem Spec 40:112, 1964
  • [56] Zhao Y, Xin H, Zhao D, et al: Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house. Ann Agric Environ Med 21:249, 2014
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Fatih Mehmet Ateş 0000-0002-7497-2211

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Ateş, F. M. (2020). Su, Tuz, Hipokloröz Asit ve Enfeksiyonlardan Korunma. Bayburt Üniversitesi Fen Bilimleri Dergisi, 3(2), 154-160.
AMA Ateş FM. Su, Tuz, Hipokloröz Asit ve Enfeksiyonlardan Korunma. Bayburt Üniversitesi Fen Bilimleri Dergisi. December 2020;3(2):154-160.
Chicago Ateş, Fatih Mehmet. “Su, Tuz, Hipokloröz Asit Ve Enfeksiyonlardan Korunma”. Bayburt Üniversitesi Fen Bilimleri Dergisi 3, no. 2 (December 2020): 154-60.
EndNote Ateş FM (December 1, 2020) Su, Tuz, Hipokloröz Asit ve Enfeksiyonlardan Korunma. Bayburt Üniversitesi Fen Bilimleri Dergisi 3 2 154–160.
IEEE F. M. Ateş, “Su, Tuz, Hipokloröz Asit ve Enfeksiyonlardan Korunma”, Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 3, no. 2, pp. 154–160, 2020.
ISNAD Ateş, Fatih Mehmet. “Su, Tuz, Hipokloröz Asit Ve Enfeksiyonlardan Korunma”. Bayburt Üniversitesi Fen Bilimleri Dergisi 3/2 (December 2020), 154-160.
JAMA Ateş FM. Su, Tuz, Hipokloröz Asit ve Enfeksiyonlardan Korunma. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2020;3:154–160.
MLA Ateş, Fatih Mehmet. “Su, Tuz, Hipokloröz Asit Ve Enfeksiyonlardan Korunma”. Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 3, no. 2, 2020, pp. 154-60.
Vancouver Ateş FM. Su, Tuz, Hipokloröz Asit ve Enfeksiyonlardan Korunma. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2020;3(2):154-60.

Indexing