Research Article
BibTex RIS Cite

Sabit Katsayılı İki Boyutlu Lineer Hiperbolik Denklemler İçin Cauchy Probleminin Süreksiz Fonksiyonlar Sınıfında Yüksek Mertebeden Hassas Sonlu Farklar Şeması

Year 2020, Volume: 13 Issue: 1, 6 - 12, 30.06.2020
https://doi.org/10.20854/bujse.736345

Abstract

Bu çalışmada, hidrodinamiğin çeşitli alanlarında karşılaşılan iki boyutlu skaler adveksiyon denklemi için yazılmış Cauchy probleminin pratik hesaplanması için bir sonlu fark şeması geliştirilmiştir. Bu amaçla, ana probleme göre bazı avantajları olan bir yardımcı problem sunulmuştur. Önerilen yardımcı problem, daha yüksek mertebeden hassas bir sonlu farklar şeması oluşturmaya imkan sağlar.

References

  • [1] Ames, W.F. Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, London, 1965.
  • [2] Ames, W.F. Numerical Methods for Partial Differential Equations. Academic Press, New York, 1977.
  • [3] Anderson, D.A., Tannehill, J.C., Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer, Vol. 1,2, Hemisphere Publishing Corporation, 1984.
  • [4] Friedrichs, K.O. Nonlinear Hyperbolic Differential Equations for Functions of Two Independent Variables, American Journal of Mathematics, Vol. 70, pp.555-589, 1948.
  • [5] Fritz, John. Partial Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1986.
  • [6] Godunov, S.K., Ryabenkii, V.S. Finite Difference Schemes. Moskow, Nauka, 1972. [7] Godunov, S.K. Equations of Mathematical Physicis. Nauka, Moskow, 1979.
  • [8] Goritskii, A.A., Krujkov, S.N., Chechkin, G.A. A First Order Ouasi-Linear Equations with Partial Differential Derivaites. Pub. Moskow University, Moskow, 1997.
  • [9] LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002, 558p.
  • [10] Noh, W.F., Protter, M.N. Difference Methods and the Equations of Hydrodynamics, Journal of Math. and Mechanics, Vol. 12, No. 2, 1963.
  • [11] Rasulov, M.A. On a Method of Solving the Cauchy Problem for a First Order Nonlinear Equation of Hyperbolic Type with a Smooth Initial Condition, Soviet Math. Dok. 43, No.1, 1991.
  • [12] Rasulov, M.A., Ragimova, T.A. A Numerical Method of the Solition of ne Nonlinear Equation of a Hyperbolic Type of the First Order Differential Equations, Minsk, Vol. 28, No.7, pp. 2056-2063, 1992.
  • [13] Rasulov, M.A. Identification of the Saturation Jump in the Process of Oil Displacement by Water in a 2D Domain, Dokl RAN, Vol. 319, No.4, pp. 943-947, 1991.
  • [14] Rasulov, M.A., Coskun, E., B. Sinsoysal. Finite Differences Method for a Two-Dimensional Nonlinear Hyperbolic Equations in a Class of Discontinuous Functions. App. Mathematics and Computation, vol.140, Issue l, August, pp.279-295, 2003, USA.
  • [15] Richmyer, R.D., Morton, K.W. Difference Methods for Initial Value Problems, New York, Wiley, Int., 1967.
  • [16] Samarskii, A.A. Theory of Difference Schemes. Moskow, Nauka, 1977.
  • [17] Smoller, J.A. Shock Wave and Reaction Diffusion Equations, Springer-Verlag, New York Inc., 1983.
  • [18] Toro, Eleuterio, F . Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin Heidelberg, 1999.
  • [19] Whitham, G.B. Linear and Nonlinear Waves, Wiley Int., New York, 1974.

A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions

Year 2020, Volume: 13 Issue: 1, 6 - 12, 30.06.2020
https://doi.org/10.20854/bujse.736345

Abstract

In this study we develop a finite difference schema for practical calculation of the Cauchy problem for the 2D scalar advection equation with a higher accuracy oder constant coefficient, encountered in different areas of hydrodynamics. For this aim to develop an auxiliary problem having some advantages over the main problem is introduced. The proposed auxiliary problem permits us construct a higher order sensitive finite differences schema.

References

  • [1] Ames, W.F. Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, London, 1965.
  • [2] Ames, W.F. Numerical Methods for Partial Differential Equations. Academic Press, New York, 1977.
  • [3] Anderson, D.A., Tannehill, J.C., Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer, Vol. 1,2, Hemisphere Publishing Corporation, 1984.
  • [4] Friedrichs, K.O. Nonlinear Hyperbolic Differential Equations for Functions of Two Independent Variables, American Journal of Mathematics, Vol. 70, pp.555-589, 1948.
  • [5] Fritz, John. Partial Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1986.
  • [6] Godunov, S.K., Ryabenkii, V.S. Finite Difference Schemes. Moskow, Nauka, 1972. [7] Godunov, S.K. Equations of Mathematical Physicis. Nauka, Moskow, 1979.
  • [8] Goritskii, A.A., Krujkov, S.N., Chechkin, G.A. A First Order Ouasi-Linear Equations with Partial Differential Derivaites. Pub. Moskow University, Moskow, 1997.
  • [9] LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002, 558p.
  • [10] Noh, W.F., Protter, M.N. Difference Methods and the Equations of Hydrodynamics, Journal of Math. and Mechanics, Vol. 12, No. 2, 1963.
  • [11] Rasulov, M.A. On a Method of Solving the Cauchy Problem for a First Order Nonlinear Equation of Hyperbolic Type with a Smooth Initial Condition, Soviet Math. Dok. 43, No.1, 1991.
  • [12] Rasulov, M.A., Ragimova, T.A. A Numerical Method of the Solition of ne Nonlinear Equation of a Hyperbolic Type of the First Order Differential Equations, Minsk, Vol. 28, No.7, pp. 2056-2063, 1992.
  • [13] Rasulov, M.A. Identification of the Saturation Jump in the Process of Oil Displacement by Water in a 2D Domain, Dokl RAN, Vol. 319, No.4, pp. 943-947, 1991.
  • [14] Rasulov, M.A., Coskun, E., B. Sinsoysal. Finite Differences Method for a Two-Dimensional Nonlinear Hyperbolic Equations in a Class of Discontinuous Functions. App. Mathematics and Computation, vol.140, Issue l, August, pp.279-295, 2003, USA.
  • [15] Richmyer, R.D., Morton, K.W. Difference Methods for Initial Value Problems, New York, Wiley, Int., 1967.
  • [16] Samarskii, A.A. Theory of Difference Schemes. Moskow, Nauka, 1977.
  • [17] Smoller, J.A. Shock Wave and Reaction Diffusion Equations, Springer-Verlag, New York Inc., 1983.
  • [18] Toro, Eleuterio, F . Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin Heidelberg, 1999.
  • [19] Whitham, G.B. Linear and Nonlinear Waves, Wiley Int., New York, 1974.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Öykü Yener

Bahaddin Sinsoysal

Mahir Resulov

Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 13 Issue: 1

Cite

APA Yener, Ö., Sinsoysal, B., & Resulov, M. (2020). A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 13(1), 6-12. https://doi.org/10.20854/bujse.736345
AMA Yener Ö, Sinsoysal B, Resulov M. A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions. BUJSE. June 2020;13(1):6-12. doi:10.20854/bujse.736345
Chicago Yener, Öykü, Bahaddin Sinsoysal, and Mahir Resulov. “A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 13, no. 1 (June 2020): 6-12. https://doi.org/10.20854/bujse.736345.
EndNote Yener Ö, Sinsoysal B, Resulov M (June 1, 2020) A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 13 1 6–12.
IEEE Ö. Yener, B. Sinsoysal, and M. Resulov, “A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions”, BUJSE, vol. 13, no. 1, pp. 6–12, 2020, doi: 10.20854/bujse.736345.
ISNAD Yener, Öykü et al. “A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions”. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 13/1 (June 2020), 6-12. https://doi.org/10.20854/bujse.736345.
JAMA Yener Ö, Sinsoysal B, Resulov M. A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions. BUJSE. 2020;13:6–12.
MLA Yener, Öykü et al. “A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 13, no. 1, 2020, pp. 6-12, doi:10.20854/bujse.736345.
Vancouver Yener Ö, Sinsoysal B, Resulov M. A Higher-Order Sensitive Finite Differences Scheme Of The Cauchy Problem For 2D Linear Hyperbolic Equations With Constant Coefficients In A Class Of Discontinuous Functions. BUJSE. 2020;13(1):6-12.