Araştırma Makalesi
BibTex RIS Kaynak Göster

AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY

Yıl 2012, Cilt: 144 Sayı: 144, 51 - 74, 01.01.2012

Öz

- Late Jurassic-Early Cretaceous Akkuyu formation was deposited in a marine carbonate platform in Central Tarurids. The organic material of the unit is composed of Type III kerogen which is woody material transported from the land. Late Jurassic- Early Cretaceous is an important period which great anoxic events in deep sea bottom occurred due to the primary organic productivity in global sea surface. Use of several trace elements values (Ni, V, U, Cr, Co, Th) revealed that Late Jurassic-Early Cretaceous Akkuyu formation shows oxic, disoxic and anoxic paleoredox conditions. In this period the primary productivity was considerably high. Examination of specimen derived from Akkuyu formation revealed that there exists a very good positive relationship between the major oxides of Al2O3, SiO2, Fe2O3, TiO2, and K2O. These combinations of major oxides indicate a detrital origin of source rock. Chemical weathering evaluations of Central Taurids in the Jurassic-Cretaceous period indicated moderate and strong weathering of source rock. K2O/Na2O versus SiO2; SiO2/Al2O3 versus K2O/Na2O; Al2O3/ SiO2 versus Fe2O3 + MgO ve TiO2 versus Fe2O3 + MgO diagrams indicated that Akkuyu formation was deposited along active and/or passive continental margin and derived from basalt and basalt+granite mixed rocks.

Kaynakça

  • Albayrak, M., 1995. Akseki–Aydınkent (Antalya) arasının Jeolojisi ve Petrol Olanakları, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü.
  • Algeo, T.J., Berner, R.A., Maynard, J.B. and Scheckler, S.E., 1995. Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants? GSA Today, 5, 64–66.
  • ——— and Scheckler, S.E., 1998. Terrestrial– marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of Royal Society B: Biology Science, 353, 113–130.
  • ——— and Maynard, J.B., 2004. Trace–Element Behavior and Redox Facies in Core Shales Of Upper Pennsylvanian Kansas- Type Cyclothems. Chemical Geology, 206, 289 – 318.
  • Amajor, L.C., 1987. Major and trace elements geochemistry of Albin and Turonian shales from the Southern Benue trough, Nigeria. Journal of African Earth Science, 6, 633 – 461.
  • Andersson, A., Dahlman, B., Gee, D.G., and Snäll, S., 1985. The Scandinavian Alum Shales. Sveriges Geologiska Undersoekn- ing, Serie Ca: Avhandlingar och Uppsatser I A4, NR 56, 50 p.
  • Arnaboldi, M. and Meyers, P.A., 2003. Geochemical evidence for paleoclimatic variations during deposition of two Pliocene sapropels from the Vrica section, Calabria. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 257–271.
  • Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–627.
  • Blumenthal, M.M., 1951, Batı Toroslarda Alanya ard ülkesinde jeolojik araştırmalar. MTA dergisi, n.5, 194.
  • Boggs, Jr.S., 2009. Petrology of sedimentary rocks. Cambridge University Press, UK, 2nd edition, 600 p.
  • Breit, G.N. and Wanty, R.B., 1991. Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis. Chemical Geology, 91, 83-97.
  • Brüchert, V., R., Jorgensen, B.B., Neumann, K., Richmann, D., Schlösser, M. and Schulz, H., 2003. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochimica et Cosmochimica Acta, 67, 4505–4518.
  • Brumsack, H. J., 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimat- ology, Palaeoecology, 232, 344–361.
  • Caplan, M.L. and Bustin, R.M., 1998. Paleoceanographic controls on geoche- mical characteristics of organic rich Exshaw mudrocks: role of enhanced primary productivity. Organic Geoche- mistry, 30, 161–188.
  • Demaison, G.J. and Moore, G.T., 1980. Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin 64, 1179– 1209.
  • Dill, H., 1986. Metallogenesis of Early Paleozoic Graptolite Shales from the Graefenthal Horst (Northern Bavaria-Federal Republic of Germany). Economic Geology, 81, 889–903.
  • ———. Teschner, M. and Wehner, H., 1988. Petrography, inorganic and organic geochemistry of Lower Permian Carbon- aceous Fan sequences (‘‘Brandschiefer Series’’)-Federal Republic of Germany: Contrints to their paleogeography and assessment of their source rock potential. Chemical Geology, 67, 307– 325.
  • Erbacher, J., Huber, B.T., Norris, R.D. and Markey, M., 2001. Increased thermo- haline stratification as a possible cause for an open ocean anoxic event in the Cretaceous period. Nature, 409, 325- 326.
  • Fedo, C.M., Nesbitt, H.W. and Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921– 924.
  • Filipelli, G.M., Delaney, M.L., Garrison, R.E., Omarzai, S.K. and Behl, R.J., 1994. Phosphorus accumulation rates in a Miocene low oxygen basins: the Monterey formation (Pismo Basin), California. Marine Geology, 116, 419-430.
  • Fleischer, V.D., Garlick, W.G., and Haldane, R., 1976. Geology of the Zambian Copper- belt; In: K.H. Wolf (ed). Handbook of Stata-Bound and Stratiform Ore Deposits, vol. 6. Elsevier, Amsterdam, 223–352.
  • Floyd, P.A. and Leveridge, B.E., 1987. Tectonic environment of the Devonian Grams- catho basin, south Cornwell: framework mode and geochemical evidence from turbidite sandstones. Journal of the Geological Society London, 144, 531– 542.
  • Gabo, J.A.S., Dimalanta, C.B., Asio, M.G., Queaño, K.L., Yumul Jr., G.P. and Imai, A., 2009. Geology and geochemistry of the clastic sequences from North- western Panay (Philippines): Implications for provenance and geotectonic setting. Tectonophysics, 479, 111-119.
  • Garver, J.I., Royce, P.R. and Scott, T.J., 1994. The presence of ophiolites in tectonic highlands as determined by chromium and nickel anomalies in synorogenic shales: two examples from North America. Russian Geology and Geophysics, 35, 1-8.
  • Garver, J.I., Royce, P.R. and Smick, T.A., 1996. Chromium and nickel in shale of the Taconic Foreland: A case study for the provenence of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106.
  • Goldberg, K. and Munir Humayun, M., 2010. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 175-183.
  • Gustavson, L.B., and Williams, N., 1981. Sediment-hosted stratiform deposits of copper, lead, and zinc; In: B.J. Skinner (ed). Seventy-Fifth Anniversary Volume, The Economic Geology Publishing Co., Yale, 139–178.
  • Harnois, L., 1988. The CIW index: a new Chemical Index of Weathering. Sedi- mentary Geology, 55, 319– 322.
  • Hatch, J.R. and Leventhal, J.S., 1992 Relationship between inferred redox potential of the depositional environ- ment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Waba- unsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.
  • Hedges, J.I. and Keil, R.G., 1995. Sedimentary organic matter preservation: an assessm- ent and speculative synthesis. Marine Chemistry, 49, 81-115.
  • Hiscott, R.N., 1984. Ophiolitic source rocks for Taconic-age flysch: Trace element evidence. Geological Society of America Bulletin, 95, 1261-1267.
  • Holland, H., 1978. The Chemistry of the Atmosphere and the Oceans. Wiley Interscience, New York. 351 p.
  • Ibach, L.E.J., 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin, 66, 170-188.
  • Ingall, E.D. and Jahnke, R.A., 1997. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology, 139, 219–229.
  • Jones, B. and Manning, D.A.C., 1994. Comparison of geological indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111, 111-129.
  • Kirschbaum, A., Martinez, E., Pettinari, G. and Herrero, S., 2005. Weathering profiles in granites, Sierra Notre (Cordoba, Argentina). Journal of South American Earth Sciences, 19, 479–493.
  • Koca, D., Sarı, A., Koç, Ş., Yavuz, B. and Koralay, D.B., 2010. Denizel kaynak kayalarda ana ve iz element zenginleşmelerinde Türkiye’den bir örnek: Akkuyu Formasyonu (Orta Toroslar). Gazi Üniversitesi Mühendislik -Mimarlık Fakültesi Dergisi, 25, 243-256.
  • Kronberg, B. I. and Nesbitt, H. W., 1981. Quantification of weathering, soil geoche- mistry and soil fertility. Journal of Soil Science, 32, 453-459.
  • Lewan, M.D., 1984. Factors controlling the proportionality of vanadium and nickel in crude oils. Geochimica et Cosmo- chimica Acta, 48, 2231–2238.
  • Lewan, M.D. and Maynard, J.B., 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta, 46, 2547–2560.
  • Mader, D. and Neubauer, F., 2004. Provenance of Palaeozoic sandstones from the Carnic Alps (Austria): petrographic and geochemical indicators. International Journal of Earth Sciences, 93, 262–281.
  • Martin, C., 1969. Akseki kuzeyindeki bir kısım Torosların stratigrafik ve tektonik incele- mesi. Maden Tetkik ve Arama Dergisi, 72, 157–175.
  • Middleburg, J.J. and Comans, R.N.J., 1991. Sorption of cadmium on hydroxyapatite. Chemical Geology, 90, 45-53.
  • Monod, O., 1977. Recherches géologiques dans les Taurus occidental au sud de Beyşehir (Turquie). Thèse de Doctorat, Université Paris – Sud (Orsay), 442 (unpublished).
  • Morford, J.L., Russell, A.D. and Emerson, S. 2001. Trace metal evidence for changes in redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Marine Geology, 174, 355–369.
  • Murphy, A.E., Sageman, B.B., Hollander, D.J., Lyons, T.L. and Brett, C.E., 2000. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal watercolumn mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 15, 280– 291.
  • Nesbitt, H.W. and Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermo- dynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.
  • ——— and ———, 1989. formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.
  • Nijenhuis, I.A., Bosch, H.-J., Sinninghe Damsté, J.S., Brumsack, H.-J. and De Lange, G.J., 1999. Organic matter and trace element rich sapropels and black shales: a geochemical comparison. Earth and Planetary Science Letters, 169, 277– 290.
  • Pedersen, T.F. and Calvert, S.E., 1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sedi- ments and sedimentary rocks? Ame- rican Association of Petroleum Geolo- gists Bulletin, 74, 454–466.
  • Pettijohn, F.J., Potter, P.R. and Siever, R., 1987. Sand and sandstones. Springer, New York, 2nd edition. 553p.
  • Potter, P.E., 1978. Petrology and chemistry of modern big river sands. Journal of Geology, 86, 423–449.
  • Rimmer, S.M., Thompson, J.A., Goodnight, S.A. and Robl, T.L., 2004. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoc- limatology, Palaeoecology, 215, 125– 154.
  • Roaldset, E., 1972. Mineralogy and geoc- hemistry of Quaternary clays in the Numedal Area, southern Norway. Norsk Geolisk Tidsskrift, 52, 335– 369.
  • Roser, B.P. and Korsch, R.J., 1986. Deter- mination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.
  • Ross, D.J.K. and Bustin, R.M., 2006. Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, 54, 337–365.
  • Ruttenberg, K.C. and Goñi, M.N., 1997. Phos- phorus distribution, C:N:P ratios, and 13C in arctic, temperate, and tropical coastal sediments: tools for charac- terizing bulk sedimentary organic matter. Marine Geology, 139, 123– 145.
  • Sarı, A., Sonel, N. and Doğan A.O, 1997. Üzümlü-Çamlık arasında kalan bölgenin Stratigrafisi (Beyşehir Güneyi, Konya). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2, 17–38.
  • Sarı, A., Koca, D., Koc, S., Yavuz, B. and Koralay, D.B., 2008. Üst Jura denizel fasiyeslerinde iz element birikimlerinde organik madde içeriğinin rolü (Orta Toroslar ,Türkiye). Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 23, 43-56.
  • Selby, M.J., 1993. Hillslope Materials and Processes. 2nd Edition Oxford University Press, Oxford, 480 p.
  • Sethie, P. S., Hannigan, R.E. and Leithold, E.L., 1998. Rare-earth element chemistry of Cenomanian–Turonian shales of the North American Greenhorn Sea, Utah. In: Schieber, J., W. Zimmerle, and P. Sethi (ed). Shales and Mudstones II:E. Schweizerbart’sche Verlagsbuchhand- lung, Stuttgart, 296p.
  • Sonel, N., Sarı, A., Doğan, A.O. and Bozüyük, İ., 1995. Üzümlü (Beyşehir) civarının kaynak kaya fasiyesleri ve petrol oluşumunun organik jeokimyasal yöntemlerle incelenmesi. Türkiye Jeoloji Kurultayı Bülteni, 10, 34–40.
  • Suees, E., Kulm, L.D. and Killingley, J.S., 1987. Coastal upwelling and a history of organic-rich mudstone deposition off Peru. : In: J.Brooks and A.J. Fleet (ed). Marine Petroleum Source Rocks. Geological Society Special publication, 26, 181-197.
  • Toker, V., Sonel, N., Ayyıldız, T. and Albayrak, M., 1993. Akseki Kuzeyi–Üzümdere (Antalya) civarının stratigrafisi. Türkiye Jeoloji Kurultayı Bülteni, 36, 57–71.
  • Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12-32.
  • van Cappellen, P. and Ingall, E.D., 1994. Benthic phosphorus regeneration, net primary production and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9, 677-692.
  • Vogt, T., 1927. Sulitjelmafeltets geologi og petrografi. Norges Geologiske Under- sokelse, 121, 1– 560 (in Norwegian, with English abstract).
  • Warning, B. and Brumsack, H.J. 2000. Trace metal signatures of Mediterranean sapro- pels. Palaeogeography, Palaeoclimatology, Palaeoecology, 158, 293–309.

AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY

Yıl 2012, Cilt: 144 Sayı: 144, 51 - 74, 01.01.2012

Öz

- Late Jurassic-Early Cretaceous Akkuyu formation was deposited in a marine carbonate platform in Central Tarurids. The organic material of the unit is composed of Type III kerogen which is woody material transported from the land. Late Jurassic- Early Cretaceous is an important period which great anoxic events in deep sea bottom occurred due to the primary organic productivity in global sea surface. Use of several trace elements values (Ni, V, U, Cr, Co, Th) revealed that Late Jurassic-Early Cretaceous Akkuyu formation shows oxic, disoxic and anoxic paleoredox conditions. In this period the primary productivity was considerably high. Examination of specimen derived from Akkuyu formation revealed that there exists a very good positive relationship between the major oxides of Al2O3, SiO2, Fe2O3, TiO2, and K2O. These combinations of major oxides indicate a detrital origin of source rock. Chemical weathering evaluations of Central Taurids in the Jurassic-Cretaceous period indicated moderate and strong weathering of source rock. K2O/Na2O versus SiO2; SiO2/Al2O3 versus K2O/Na2O; Al2O3/ SiO2 versus Fe2O3 + MgO ve TiO2 versus Fe2O3 + MgO diagrams indicated that Akkuyu formation was deposited along active and/or passive continental margin and derived from basalt and basalt+granite mixed rocks.

Kaynakça

  • Albayrak, M., 1995. Akseki–Aydınkent (Antalya) arasının Jeolojisi ve Petrol Olanakları, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü.
  • Algeo, T.J., Berner, R.A., Maynard, J.B. and Scheckler, S.E., 1995. Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants? GSA Today, 5, 64–66.
  • ——— and Scheckler, S.E., 1998. Terrestrial– marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of Royal Society B: Biology Science, 353, 113–130.
  • ——— and Maynard, J.B., 2004. Trace–Element Behavior and Redox Facies in Core Shales Of Upper Pennsylvanian Kansas- Type Cyclothems. Chemical Geology, 206, 289 – 318.
  • Amajor, L.C., 1987. Major and trace elements geochemistry of Albin and Turonian shales from the Southern Benue trough, Nigeria. Journal of African Earth Science, 6, 633 – 461.
  • Andersson, A., Dahlman, B., Gee, D.G., and Snäll, S., 1985. The Scandinavian Alum Shales. Sveriges Geologiska Undersoekn- ing, Serie Ca: Avhandlingar och Uppsatser I A4, NR 56, 50 p.
  • Arnaboldi, M. and Meyers, P.A., 2003. Geochemical evidence for paleoclimatic variations during deposition of two Pliocene sapropels from the Vrica section, Calabria. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 257–271.
  • Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–627.
  • Blumenthal, M.M., 1951, Batı Toroslarda Alanya ard ülkesinde jeolojik araştırmalar. MTA dergisi, n.5, 194.
  • Boggs, Jr.S., 2009. Petrology of sedimentary rocks. Cambridge University Press, UK, 2nd edition, 600 p.
  • Breit, G.N. and Wanty, R.B., 1991. Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis. Chemical Geology, 91, 83-97.
  • Brüchert, V., R., Jorgensen, B.B., Neumann, K., Richmann, D., Schlösser, M. and Schulz, H., 2003. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochimica et Cosmochimica Acta, 67, 4505–4518.
  • Brumsack, H. J., 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimat- ology, Palaeoecology, 232, 344–361.
  • Caplan, M.L. and Bustin, R.M., 1998. Paleoceanographic controls on geoche- mical characteristics of organic rich Exshaw mudrocks: role of enhanced primary productivity. Organic Geoche- mistry, 30, 161–188.
  • Demaison, G.J. and Moore, G.T., 1980. Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin 64, 1179– 1209.
  • Dill, H., 1986. Metallogenesis of Early Paleozoic Graptolite Shales from the Graefenthal Horst (Northern Bavaria-Federal Republic of Germany). Economic Geology, 81, 889–903.
  • ———. Teschner, M. and Wehner, H., 1988. Petrography, inorganic and organic geochemistry of Lower Permian Carbon- aceous Fan sequences (‘‘Brandschiefer Series’’)-Federal Republic of Germany: Contrints to their paleogeography and assessment of their source rock potential. Chemical Geology, 67, 307– 325.
  • Erbacher, J., Huber, B.T., Norris, R.D. and Markey, M., 2001. Increased thermo- haline stratification as a possible cause for an open ocean anoxic event in the Cretaceous period. Nature, 409, 325- 326.
  • Fedo, C.M., Nesbitt, H.W. and Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921– 924.
  • Filipelli, G.M., Delaney, M.L., Garrison, R.E., Omarzai, S.K. and Behl, R.J., 1994. Phosphorus accumulation rates in a Miocene low oxygen basins: the Monterey formation (Pismo Basin), California. Marine Geology, 116, 419-430.
  • Fleischer, V.D., Garlick, W.G., and Haldane, R., 1976. Geology of the Zambian Copper- belt; In: K.H. Wolf (ed). Handbook of Stata-Bound and Stratiform Ore Deposits, vol. 6. Elsevier, Amsterdam, 223–352.
  • Floyd, P.A. and Leveridge, B.E., 1987. Tectonic environment of the Devonian Grams- catho basin, south Cornwell: framework mode and geochemical evidence from turbidite sandstones. Journal of the Geological Society London, 144, 531– 542.
  • Gabo, J.A.S., Dimalanta, C.B., Asio, M.G., Queaño, K.L., Yumul Jr., G.P. and Imai, A., 2009. Geology and geochemistry of the clastic sequences from North- western Panay (Philippines): Implications for provenance and geotectonic setting. Tectonophysics, 479, 111-119.
  • Garver, J.I., Royce, P.R. and Scott, T.J., 1994. The presence of ophiolites in tectonic highlands as determined by chromium and nickel anomalies in synorogenic shales: two examples from North America. Russian Geology and Geophysics, 35, 1-8.
  • Garver, J.I., Royce, P.R. and Smick, T.A., 1996. Chromium and nickel in shale of the Taconic Foreland: A case study for the provenence of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106.
  • Goldberg, K. and Munir Humayun, M., 2010. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 175-183.
  • Gustavson, L.B., and Williams, N., 1981. Sediment-hosted stratiform deposits of copper, lead, and zinc; In: B.J. Skinner (ed). Seventy-Fifth Anniversary Volume, The Economic Geology Publishing Co., Yale, 139–178.
  • Harnois, L., 1988. The CIW index: a new Chemical Index of Weathering. Sedi- mentary Geology, 55, 319– 322.
  • Hatch, J.R. and Leventhal, J.S., 1992 Relationship between inferred redox potential of the depositional environ- ment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Waba- unsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.
  • Hedges, J.I. and Keil, R.G., 1995. Sedimentary organic matter preservation: an assessm- ent and speculative synthesis. Marine Chemistry, 49, 81-115.
  • Hiscott, R.N., 1984. Ophiolitic source rocks for Taconic-age flysch: Trace element evidence. Geological Society of America Bulletin, 95, 1261-1267.
  • Holland, H., 1978. The Chemistry of the Atmosphere and the Oceans. Wiley Interscience, New York. 351 p.
  • Ibach, L.E.J., 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin, 66, 170-188.
  • Ingall, E.D. and Jahnke, R.A., 1997. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology, 139, 219–229.
  • Jones, B. and Manning, D.A.C., 1994. Comparison of geological indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111, 111-129.
  • Kirschbaum, A., Martinez, E., Pettinari, G. and Herrero, S., 2005. Weathering profiles in granites, Sierra Notre (Cordoba, Argentina). Journal of South American Earth Sciences, 19, 479–493.
  • Koca, D., Sarı, A., Koç, Ş., Yavuz, B. and Koralay, D.B., 2010. Denizel kaynak kayalarda ana ve iz element zenginleşmelerinde Türkiye’den bir örnek: Akkuyu Formasyonu (Orta Toroslar). Gazi Üniversitesi Mühendislik -Mimarlık Fakültesi Dergisi, 25, 243-256.
  • Kronberg, B. I. and Nesbitt, H. W., 1981. Quantification of weathering, soil geoche- mistry and soil fertility. Journal of Soil Science, 32, 453-459.
  • Lewan, M.D., 1984. Factors controlling the proportionality of vanadium and nickel in crude oils. Geochimica et Cosmo- chimica Acta, 48, 2231–2238.
  • Lewan, M.D. and Maynard, J.B., 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta, 46, 2547–2560.
  • Mader, D. and Neubauer, F., 2004. Provenance of Palaeozoic sandstones from the Carnic Alps (Austria): petrographic and geochemical indicators. International Journal of Earth Sciences, 93, 262–281.
  • Martin, C., 1969. Akseki kuzeyindeki bir kısım Torosların stratigrafik ve tektonik incele- mesi. Maden Tetkik ve Arama Dergisi, 72, 157–175.
  • Middleburg, J.J. and Comans, R.N.J., 1991. Sorption of cadmium on hydroxyapatite. Chemical Geology, 90, 45-53.
  • Monod, O., 1977. Recherches géologiques dans les Taurus occidental au sud de Beyşehir (Turquie). Thèse de Doctorat, Université Paris – Sud (Orsay), 442 (unpublished).
  • Morford, J.L., Russell, A.D. and Emerson, S. 2001. Trace metal evidence for changes in redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Marine Geology, 174, 355–369.
  • Murphy, A.E., Sageman, B.B., Hollander, D.J., Lyons, T.L. and Brett, C.E., 2000. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal watercolumn mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 15, 280– 291.
  • Nesbitt, H.W. and Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermo- dynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.
  • ——— and ———, 1989. formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.
  • Nijenhuis, I.A., Bosch, H.-J., Sinninghe Damsté, J.S., Brumsack, H.-J. and De Lange, G.J., 1999. Organic matter and trace element rich sapropels and black shales: a geochemical comparison. Earth and Planetary Science Letters, 169, 277– 290.
  • Pedersen, T.F. and Calvert, S.E., 1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sedi- ments and sedimentary rocks? Ame- rican Association of Petroleum Geolo- gists Bulletin, 74, 454–466.
  • Pettijohn, F.J., Potter, P.R. and Siever, R., 1987. Sand and sandstones. Springer, New York, 2nd edition. 553p.
  • Potter, P.E., 1978. Petrology and chemistry of modern big river sands. Journal of Geology, 86, 423–449.
  • Rimmer, S.M., Thompson, J.A., Goodnight, S.A. and Robl, T.L., 2004. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoc- limatology, Palaeoecology, 215, 125– 154.
  • Roaldset, E., 1972. Mineralogy and geoc- hemistry of Quaternary clays in the Numedal Area, southern Norway. Norsk Geolisk Tidsskrift, 52, 335– 369.
  • Roser, B.P. and Korsch, R.J., 1986. Deter- mination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.
  • Ross, D.J.K. and Bustin, R.M., 2006. Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, 54, 337–365.
  • Ruttenberg, K.C. and Goñi, M.N., 1997. Phos- phorus distribution, C:N:P ratios, and 13C in arctic, temperate, and tropical coastal sediments: tools for charac- terizing bulk sedimentary organic matter. Marine Geology, 139, 123– 145.
  • Sarı, A., Sonel, N. and Doğan A.O, 1997. Üzümlü-Çamlık arasında kalan bölgenin Stratigrafisi (Beyşehir Güneyi, Konya). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2, 17–38.
  • Sarı, A., Koca, D., Koc, S., Yavuz, B. and Koralay, D.B., 2008. Üst Jura denizel fasiyeslerinde iz element birikimlerinde organik madde içeriğinin rolü (Orta Toroslar ,Türkiye). Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 23, 43-56.
  • Selby, M.J., 1993. Hillslope Materials and Processes. 2nd Edition Oxford University Press, Oxford, 480 p.
  • Sethie, P. S., Hannigan, R.E. and Leithold, E.L., 1998. Rare-earth element chemistry of Cenomanian–Turonian shales of the North American Greenhorn Sea, Utah. In: Schieber, J., W. Zimmerle, and P. Sethi (ed). Shales and Mudstones II:E. Schweizerbart’sche Verlagsbuchhand- lung, Stuttgart, 296p.
  • Sonel, N., Sarı, A., Doğan, A.O. and Bozüyük, İ., 1995. Üzümlü (Beyşehir) civarının kaynak kaya fasiyesleri ve petrol oluşumunun organik jeokimyasal yöntemlerle incelenmesi. Türkiye Jeoloji Kurultayı Bülteni, 10, 34–40.
  • Suees, E., Kulm, L.D. and Killingley, J.S., 1987. Coastal upwelling and a history of organic-rich mudstone deposition off Peru. : In: J.Brooks and A.J. Fleet (ed). Marine Petroleum Source Rocks. Geological Society Special publication, 26, 181-197.
  • Toker, V., Sonel, N., Ayyıldız, T. and Albayrak, M., 1993. Akseki Kuzeyi–Üzümdere (Antalya) civarının stratigrafisi. Türkiye Jeoloji Kurultayı Bülteni, 36, 57–71.
  • Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12-32.
  • van Cappellen, P. and Ingall, E.D., 1994. Benthic phosphorus regeneration, net primary production and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9, 677-692.
  • Vogt, T., 1927. Sulitjelmafeltets geologi og petrografi. Norges Geologiske Under- sokelse, 121, 1– 560 (in Norwegian, with English abstract).
  • Warning, B. and Brumsack, H.J. 2000. Trace metal signatures of Mediterranean sapro- pels. Palaeogeography, Palaeoclimatology, Palaeoecology, 158, 293–309.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Sarı

Derya Koca Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 144 Sayı: 144

Kaynak Göster

APA Sarı, A., & Koca, D. (2012). AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY. Bulletin of the Mineral Research and Exploration, 144(144), 51-74.
AMA Sarı A, Koca D. AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY. Bull.Min.Res.Exp. Ocak 2012;144(144):51-74.
Chicago Sarı, Ali, ve Derya Koca. “AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY”. Bulletin of the Mineral Research and Exploration 144, sy. 144 (Ocak 2012): 51-74.
EndNote Sarı A, Koca D (01 Ocak 2012) AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY. Bulletin of the Mineral Research and Exploration 144 144 51–74.
IEEE A. Sarı ve D. Koca, “AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY”, Bull.Min.Res.Exp., c. 144, sy. 144, ss. 51–74, 2012.
ISNAD Sarı, Ali - Koca, Derya. “AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY”. Bulletin of the Mineral Research and Exploration 144/144 (Ocak 2012), 51-74.
JAMA Sarı A, Koca D. AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY. Bull.Min.Res.Exp. 2012;144:51–74.
MLA Sarı, Ali ve Derya Koca. “AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY”. Bulletin of the Mineral Research and Exploration, c. 144, sy. 144, 2012, ss. 51-74.
Vancouver Sarı A, Koca D. AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY. Bull.Min.Res.Exp. 2012;144(144):51-74.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en