Research Article
BibTex RIS Cite

The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey

Year 2021, Volume: 165 Issue: 165, 217 - 234, 19.08.2021
https://doi.org/10.19111/bulletinofmre.820395

Abstract

As a result of urbanization, natural surfaces are replaced by artificial surfaces that trap heatsuch as buildings, pavements and asphalt, so residential areas have higher temperature values than rural areas. This effect, defined as the urban heat island, causes an increase not only in air temperature but also in the subsurface and groundwater. Groundwater temperature values were measured during one year in an area approximately 53 km2 consisting of different types of settlement areas to determine the urban heat island effect on the subsurface of Kütahya. As a result of the measurements, urban heat island maps were prepared. It was observed that the groundwater temperature anomalies increased towards the urban/industrial areas. The difference of groundwater temperature in urban / rural areas reached up to 7°C by well. This heat energy increasing with the effect of urban heat island can be used in the heating processes of buildings by utilizing systems called “shallow geothermal energy”. For this reason, the heat potential of the alluvial aquifer under Kütahya was calculated. The theoretical heat potential values of the this aquifer range between 1.64 × 1013 kJ K-1 and 5.55 × 1013 kJ K-1 with a mean value of 3.50 × 1013 kJ K-1. It is thought that urban heat island maps and the heat potential calculations of the aquifers may be important parameters for applicability of shallow geothermal systems in the city center of Kütahya.

Thanks

We would like to thank Dr. Alessandro Casasso, who let us to use the Politecnico di Torino (POLITO) laboratories for thermal analysis within the scope of the study, Kütahya Meteorology Directorate for their support in providing some of the data used in the study, Geophysical Engineer Serkan Azdiken and Geological Senior Engineer Turgay Eser to the 3rd Regional Directorate of State Hydraulic Works (DSİ) and Zemin Mühendislik Company (Kütahya).

References

  • Allen, A., Milenic, D., Sikora, P. 2003. Shallow gravel aquifers and the urban ‘heat island’ effect: a source of low enthalpy geothermal energy. Geothermics 32, 569-578.
  • Ampofo, F., Maidment, G. G., Missenden, J. F. 2004. Underground railway environment in the UK Part 2: investigation of heat load. Applied Thermal Engineering 24, 633-645.
  • Arola, T., Korkka-Niemi, K. 2014. The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeology Journal 22, 1953-1967.
  • Aye, L., Charters, W. W. S. 2003. Electrical and engine- driven heat pumps for effective utilisation of renewable energy resources. Applied Thermal Engineering 23, 1295-1300.
  • Balke, K. D. 1977. Das Grundwasser als Energieträger. Brennstoff - Wärme - Kraft 29, 191-194.
  • Banks, D. 2010. An introduction to thermogeology: ground source heating and cooling. Blackwell, Oxford.
  • Bayer, P., Attard, G., Blum, P., Menberg, K. 2019. The geothermal potential of cities. Renewable and Sustainable Energy Reviews 106, 17-30.
  • Boyd, L. T., Lienau, P. J. 1995. Geothermal heat pump performance. Geothermal Resources Council Annual 1995, 8-11 October, Reno, NV, USA.
  • Casasso, A., Pestotnik, S., Rajver, D., Jez, J., Prestor, J., Sethi, R. 2017. Assessment and mapping of the closed-loop shallow geothermal potential of Cerkno (Slovenia). Energy Procedia 125, 335-344.
  • Changnon, S. A. 1999. A rare long record of deep soil temperatures defines temporal temperature changes and an urban heat island, Climatic Change 42, 531- 538.
  • Curtis, R., Lund, J., Banner, B., Rybach, L., Hellstrom, G. 2005. Ground source heat pumps - geothermal energy for anyone, anywhere: current worldwide activity. Proceedings of the World Geothermal Congress-2005, 24-29 April 2005, Antalya, Turkey.
  • Devlet Su İşleri Genel Müdürlüğü (DSİ), 2003. Kütahya Ovası Karst Hidrojeolojisi Ara Raporu.
  • EGEC, 2018. 2018 EGEC Geothermal Market Report. Dumas, P., Garabetian, T., Serrano, C., Pinzuti, V. (editors). European Geothermal Energy Council (EGEC), Brussels.
  • ESRI, 2019. ArcGIS Desktop 10.7. Redlands, CA: Environmental Systems Research Institute.
  • Ezber, Y., Sen, O.L., Kindap, T., Karaca, M. 2007. Climatic effects of urbanization in Istanbul: a statistical and modeling analysis. International Journal of Climatology 27, 667-679.
  • Ferguson, G., Woodbury, A. D. 2004. Subsurface heat flow in an urban environment, Journal of Geophysical Research 109, B02402, doi:10.1029/2003JB002715.
  • Ferguson, G., Woodbury, A. D. 2007. Urban heat island in the subsurface. Geophysical Research Letters 34 (23). Francisco, Pinto, J., Carrilho, da Graça, G. 2018. Comparison between geothermal district heating and deep energy refurbishment of residential building districts. Sustainable Cities and Society 38, 309-324.
  • Gallo, K. P., Owen, T. P. 1999. Satellite-based adjustments for the urban heat island bias. Journal of Applied Meteorology and Climatology 38, 806-813.
  • Howard, L. 1883. Climate of London. 3rd Edition, Harvey and Darton, London.
  • Huang, S. 2012. Geothermal energy in China. Nature Climate Change 2, 557-560.
  • Huang, S., Taniguchi, M., Yamano, M., Wang, C. 2009. Detecting urbanization effects on surface and subsurface thermal environment - a case study of Osaka. Science of the Total Environment 407, 3142-3152.
  • Karaca, M., Anteplioğlu, U., Karsan, H. 1995. Detection of urban heat island in İstanbul, Turkey. Nuovo Cimento 18C (N1), 49-55.
  • Kataoka, K., Matsumoto, F., Ichinose, T. , Taniguchi, M. 2009. Urban warming trends in several large Asian cities over the last 100 years. Science of the Total Environment 407, 3112-3119.
  • Kerl, M., Runge, N., Tauchmann, H., Goldscheider, N. 2012. Hydrogeologisches Konzeptmodell von München: Grundlage für die thermische Grundwassernutzung (Conceptual hydrogeological model of the City of Munich, Germany, as a basis for geothermal groundwater utilisation). Grundwasser 17, 127-135.
  • Klysik, K., Fortuniak, K. 1999. Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmospheric Environment 33, 3885-3995.
  • Krarti, M., Lopez-Alonzo, C., Claridge, D. E., Kreider, J. F. 1995. Analytical model to predict annual soil surface temperature variation. Journal of Solar Energy Engineering 117, 91-99.
  • Kottmeier, C., Bieger,t C., Corsmeier, U. 2007. Effects of urban land use on surface temperature in Berlin. Journal of Urban Planning and Development 133, 128-137.
  • Köppen, W., Geiger, R. 1954. Klima der erde (Climate of the earth). Wall Map 1:16 Mill. Klett-Perthes, Gotha.
  • Kütahya Meteoroloji Müdürlüğü. 1970-2019 yılları arasında Kütahya Meteoroloji İstasyonu’ndan ölçülen Kütahya ili şehir merkezine ait aylık/yıllık hava sıcaklığı, 100 cm toprak sıcaklığı değerleri.
  • Landsberg, H. 1956. The climate of towns. In Man’s Role in Changing the Face of the Earth, Edited by W. L. Thomas Jr., pp. 584-603, University of Chicago Press, Chicago, III.
  • Landsberg, H. E. 1981. The urban climate. Academic Press, New York.
  • Lee, J. S., Kim, H. C., Im, S. Y. 2017. Comparative analysis between district heating and geothermal heat pump system. Energy Procedia 116, 403-406.
  • Mälkki, E., Soveri, J. 1986. Pohjavesi (Groundwater). In: Mustonen S (ed) Sovellettu hydrologia (Applied hydrology). Vesiyhdistys ry (Water Association). Mäntän kirjapaino (Mäntän printing house), Mänttä.
  • Menberg, K., Bayer, P., Zosseder, K., Rumohr, S., Blum, P. 2013a. Subsurface urban heat islands in German cities. Science of the Total Environment 442, 123- 133.
  • Menberg, K., Blum, P., Schaffitel A., Bayer, A. 2013b. Long- term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Environmental Science and Technology 47, 9747-9455.
  • Montavez, J. P, Rodriguez, A., Himenez, J. I. 2000. A study of the urban heat island of Granada. International Journal of Climatalogy 20, 899-911.
  • Murtha, G. G., Williams, J. 1986. Measurement, prediction and interpolation of soil temperature for use in soil taxonomy: Tropical Australian experience, Geoderma 37, 189-206.
  • Nitoiu, D., Beltrami, H. 2005. Subsurface thermal effects of land use changes. Journal of Geophysical Research 110, F01005, doi:10.1029/2004JF000151.
  • Oikari, H. 1981. Pohjaveden lämpötila Etelä - ja Keski- Suomessa vuosina 1975-1978 (Groundwater temperature in southern and central Finland in 1975 - 1978). Vesihallituksen lähde-ja pohjavesiputkihavaintoihin perustuva selvitys (Report based on the Water Board’s spring and groundwater pipe observations), Pro gradu- tutkielma (Master’s thesis). Maantieteen Laitos (Department of Geography), Luonnonmaantiede (Natural Geography), Helsingin Yliopisto (University of Helsinki), Helsinki, 65.
  • Oke, T. R. 1973. City size and the urban heat island. Atmospheric Environment 7, 769- 779.
  • Oke, T. R. 1987. Boundary layer climates. Routhledge, London.
  • Oke, T. R. 1988. The urban energy balance. Progress Physical Geography 12, 471-508.
  • Özburan, M. 2009. Kütahya ve çevresinin neotektonik incelenmesi. Doktora Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, 227.
  • Perrier, F., Le Mouel, J.L., Poirier, J.P., Shnirman, M.G. 2005. Long-term climate change and surface versus underground temperature measurements in Paris. International Journal of Climatology 25, 1619-1631.
  • Pinho, O. S., Manso Orgaz, M. D. 2000. The urban heat island in a small city in coastal Portugal. International Journal of Biometeorology 44, 198-203.
  • Pollack, H. N., Huang, S. P., Shen, P. Y. 1998. Climate change record in subsurface temperatures: a global perspective. Science 282, 279-281.
  • Pophillat, W., Bayer, P., Teyssier, E., Blum, P., Attard, G. 2020. Impact of groundwater heat pump systems on subsurface temperature under variable advection, conduction and dispersion. Geothermics 83.
  • Popiel, C. O., Wojtkowiak, J., Biernacka, B. 2001. Measurements of temperature distribution in ground. Experimental Thermal and Fluid Science 25, 301-309.
  • Rafferty, K. 2000. Scaling in geothermal heat pump systems.Geo - Heat Center Quart Bull. 21(1), 11-15.
  • Rees, S. 2016. Advances in ground - source heat pump systems. Amsterdam: Woodhead Publishing.
  • Reiter, M. 2006. Vadose zone temperature measurements at a site in the northern Albuquerque Basin indicate ground-surface warming due to urbanization, Environmental and Engineering Geoscience 12, 353-360.
  • Rybach, L., Sanner, B. 2000. Ground - source heat pump systems: the European experience. Geo-Heat Center Quart Bull 21(1), 16-26.
  • Sanner, B. 2019. Summary of EGC 2019 Country Update Reports on Geothermal Energy in Europe, European Geothermal Congress 11-14 June 2019, Den Haag, The Netherlands.
  • Sanner, B. 2001. Shallow geothermal energy. Geo-Heat Center Quart Bull 22(2), 19-25.
  • Sanner, B., Karytsas, C., Mendrinos, D., Rybach, L. 2003. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 32, 579-588.
  • Soltani, M., Kashkooli, F. M., Dehghani-Sanij, A. R., Kazemi, A. R., Bordbar, N., Farschi, M. J., Elmi, M., Gharali, K., Dusseault, M. B. 2019. A comprehensive study of geothermal heating and cooling systems. Sustainable Cities and Society 44, 793-818. Spronken-Smith, R. A., Oke, T. R. 1999. The thermal regime of urban parks in two cities with different summer climates. International Journal of Remote Sensing 19, 2085- 2104.
  • Stauffer, F., Bayer, P., Blum, P., Giraldo, N. M., Kinzelbach, W. 2013. Thermal use of shallow groundwater. CRC Press.
  • Taniguchi, M. 2006. Anthropogenic effects on subsurface temperature in Bangkok. Climate of Past Discussions 2, 831-846. Taniguchi, M., Uemura, T. 2005. Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Physics of the Earth and Planetary Interiors 305-313.
  • Taniguchi, M., Shimada J., Tanaka, T., Kayane, I., Sakura, Y., Shimano, Y., Kawashima, S. 1999. Disturbances of temperature-depth profiles due to climate change and subsurface water flow: 1. An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Water Resour. Res. 35, 137-152.
  • Taniguchi, M., Uemura, T., Jago-on, K. 2007. Combined effects of urbanization and global warming on subsurface temperature in four Asian cities,Vadose Zone Journal 6, 591-596.
  • Taniguchi, M., Shimada, J., Fukuda, Y., Yamano, M., Onodera, S., Kaneko, S., Yoshikoshi, A. 2009. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand. Science of Total Environment 407, 3153-3164.
  • Türkiye İstatistik Kurumu (TÜİK), 2019. İl ve ilçelere göre il/ilçe merkezi, belde/köy nüfusu ve yıllık nüfus artış hızı verileri.
  • VDI (Verein Deutscher Igneieure), 2004. VDI 4640/4 Thermal Use of the Underground-Direct Uses.
  • VDI (Verein Deutscher Igneieure), 2010. VDI 4640 Thermal Use of Underground, Blatt 1: Fundamentals, Approvals, Environmental Aspects.
  • Yalçın, T., Yetemen, O. 2009. Local warming of groundwaters caused by the urban heat island effect in İstanbul, Turkey. Hydrogeology Journal 17, 1247-1255.
  • Zhu, K., Blum, P, Ferguson, G., Balke, K-D., Bayer, P. 2010. The geothermal potential of urban heat islands.Environmental Research Letters 5, 6.
Year 2021, Volume: 165 Issue: 165, 217 - 234, 19.08.2021
https://doi.org/10.19111/bulletinofmre.820395

Abstract

References

  • Allen, A., Milenic, D., Sikora, P. 2003. Shallow gravel aquifers and the urban ‘heat island’ effect: a source of low enthalpy geothermal energy. Geothermics 32, 569-578.
  • Ampofo, F., Maidment, G. G., Missenden, J. F. 2004. Underground railway environment in the UK Part 2: investigation of heat load. Applied Thermal Engineering 24, 633-645.
  • Arola, T., Korkka-Niemi, K. 2014. The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeology Journal 22, 1953-1967.
  • Aye, L., Charters, W. W. S. 2003. Electrical and engine- driven heat pumps for effective utilisation of renewable energy resources. Applied Thermal Engineering 23, 1295-1300.
  • Balke, K. D. 1977. Das Grundwasser als Energieträger. Brennstoff - Wärme - Kraft 29, 191-194.
  • Banks, D. 2010. An introduction to thermogeology: ground source heating and cooling. Blackwell, Oxford.
  • Bayer, P., Attard, G., Blum, P., Menberg, K. 2019. The geothermal potential of cities. Renewable and Sustainable Energy Reviews 106, 17-30.
  • Boyd, L. T., Lienau, P. J. 1995. Geothermal heat pump performance. Geothermal Resources Council Annual 1995, 8-11 October, Reno, NV, USA.
  • Casasso, A., Pestotnik, S., Rajver, D., Jez, J., Prestor, J., Sethi, R. 2017. Assessment and mapping of the closed-loop shallow geothermal potential of Cerkno (Slovenia). Energy Procedia 125, 335-344.
  • Changnon, S. A. 1999. A rare long record of deep soil temperatures defines temporal temperature changes and an urban heat island, Climatic Change 42, 531- 538.
  • Curtis, R., Lund, J., Banner, B., Rybach, L., Hellstrom, G. 2005. Ground source heat pumps - geothermal energy for anyone, anywhere: current worldwide activity. Proceedings of the World Geothermal Congress-2005, 24-29 April 2005, Antalya, Turkey.
  • Devlet Su İşleri Genel Müdürlüğü (DSİ), 2003. Kütahya Ovası Karst Hidrojeolojisi Ara Raporu.
  • EGEC, 2018. 2018 EGEC Geothermal Market Report. Dumas, P., Garabetian, T., Serrano, C., Pinzuti, V. (editors). European Geothermal Energy Council (EGEC), Brussels.
  • ESRI, 2019. ArcGIS Desktop 10.7. Redlands, CA: Environmental Systems Research Institute.
  • Ezber, Y., Sen, O.L., Kindap, T., Karaca, M. 2007. Climatic effects of urbanization in Istanbul: a statistical and modeling analysis. International Journal of Climatology 27, 667-679.
  • Ferguson, G., Woodbury, A. D. 2004. Subsurface heat flow in an urban environment, Journal of Geophysical Research 109, B02402, doi:10.1029/2003JB002715.
  • Ferguson, G., Woodbury, A. D. 2007. Urban heat island in the subsurface. Geophysical Research Letters 34 (23). Francisco, Pinto, J., Carrilho, da Graça, G. 2018. Comparison between geothermal district heating and deep energy refurbishment of residential building districts. Sustainable Cities and Society 38, 309-324.
  • Gallo, K. P., Owen, T. P. 1999. Satellite-based adjustments for the urban heat island bias. Journal of Applied Meteorology and Climatology 38, 806-813.
  • Howard, L. 1883. Climate of London. 3rd Edition, Harvey and Darton, London.
  • Huang, S. 2012. Geothermal energy in China. Nature Climate Change 2, 557-560.
  • Huang, S., Taniguchi, M., Yamano, M., Wang, C. 2009. Detecting urbanization effects on surface and subsurface thermal environment - a case study of Osaka. Science of the Total Environment 407, 3142-3152.
  • Karaca, M., Anteplioğlu, U., Karsan, H. 1995. Detection of urban heat island in İstanbul, Turkey. Nuovo Cimento 18C (N1), 49-55.
  • Kataoka, K., Matsumoto, F., Ichinose, T. , Taniguchi, M. 2009. Urban warming trends in several large Asian cities over the last 100 years. Science of the Total Environment 407, 3112-3119.
  • Kerl, M., Runge, N., Tauchmann, H., Goldscheider, N. 2012. Hydrogeologisches Konzeptmodell von München: Grundlage für die thermische Grundwassernutzung (Conceptual hydrogeological model of the City of Munich, Germany, as a basis for geothermal groundwater utilisation). Grundwasser 17, 127-135.
  • Klysik, K., Fortuniak, K. 1999. Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmospheric Environment 33, 3885-3995.
  • Krarti, M., Lopez-Alonzo, C., Claridge, D. E., Kreider, J. F. 1995. Analytical model to predict annual soil surface temperature variation. Journal of Solar Energy Engineering 117, 91-99.
  • Kottmeier, C., Bieger,t C., Corsmeier, U. 2007. Effects of urban land use on surface temperature in Berlin. Journal of Urban Planning and Development 133, 128-137.
  • Köppen, W., Geiger, R. 1954. Klima der erde (Climate of the earth). Wall Map 1:16 Mill. Klett-Perthes, Gotha.
  • Kütahya Meteoroloji Müdürlüğü. 1970-2019 yılları arasında Kütahya Meteoroloji İstasyonu’ndan ölçülen Kütahya ili şehir merkezine ait aylık/yıllık hava sıcaklığı, 100 cm toprak sıcaklığı değerleri.
  • Landsberg, H. 1956. The climate of towns. In Man’s Role in Changing the Face of the Earth, Edited by W. L. Thomas Jr., pp. 584-603, University of Chicago Press, Chicago, III.
  • Landsberg, H. E. 1981. The urban climate. Academic Press, New York.
  • Lee, J. S., Kim, H. C., Im, S. Y. 2017. Comparative analysis between district heating and geothermal heat pump system. Energy Procedia 116, 403-406.
  • Mälkki, E., Soveri, J. 1986. Pohjavesi (Groundwater). In: Mustonen S (ed) Sovellettu hydrologia (Applied hydrology). Vesiyhdistys ry (Water Association). Mäntän kirjapaino (Mäntän printing house), Mänttä.
  • Menberg, K., Bayer, P., Zosseder, K., Rumohr, S., Blum, P. 2013a. Subsurface urban heat islands in German cities. Science of the Total Environment 442, 123- 133.
  • Menberg, K., Blum, P., Schaffitel A., Bayer, A. 2013b. Long- term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Environmental Science and Technology 47, 9747-9455.
  • Montavez, J. P, Rodriguez, A., Himenez, J. I. 2000. A study of the urban heat island of Granada. International Journal of Climatalogy 20, 899-911.
  • Murtha, G. G., Williams, J. 1986. Measurement, prediction and interpolation of soil temperature for use in soil taxonomy: Tropical Australian experience, Geoderma 37, 189-206.
  • Nitoiu, D., Beltrami, H. 2005. Subsurface thermal effects of land use changes. Journal of Geophysical Research 110, F01005, doi:10.1029/2004JF000151.
  • Oikari, H. 1981. Pohjaveden lämpötila Etelä - ja Keski- Suomessa vuosina 1975-1978 (Groundwater temperature in southern and central Finland in 1975 - 1978). Vesihallituksen lähde-ja pohjavesiputkihavaintoihin perustuva selvitys (Report based on the Water Board’s spring and groundwater pipe observations), Pro gradu- tutkielma (Master’s thesis). Maantieteen Laitos (Department of Geography), Luonnonmaantiede (Natural Geography), Helsingin Yliopisto (University of Helsinki), Helsinki, 65.
  • Oke, T. R. 1973. City size and the urban heat island. Atmospheric Environment 7, 769- 779.
  • Oke, T. R. 1987. Boundary layer climates. Routhledge, London.
  • Oke, T. R. 1988. The urban energy balance. Progress Physical Geography 12, 471-508.
  • Özburan, M. 2009. Kütahya ve çevresinin neotektonik incelenmesi. Doktora Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, 227.
  • Perrier, F., Le Mouel, J.L., Poirier, J.P., Shnirman, M.G. 2005. Long-term climate change and surface versus underground temperature measurements in Paris. International Journal of Climatology 25, 1619-1631.
  • Pinho, O. S., Manso Orgaz, M. D. 2000. The urban heat island in a small city in coastal Portugal. International Journal of Biometeorology 44, 198-203.
  • Pollack, H. N., Huang, S. P., Shen, P. Y. 1998. Climate change record in subsurface temperatures: a global perspective. Science 282, 279-281.
  • Pophillat, W., Bayer, P., Teyssier, E., Blum, P., Attard, G. 2020. Impact of groundwater heat pump systems on subsurface temperature under variable advection, conduction and dispersion. Geothermics 83.
  • Popiel, C. O., Wojtkowiak, J., Biernacka, B. 2001. Measurements of temperature distribution in ground. Experimental Thermal and Fluid Science 25, 301-309.
  • Rafferty, K. 2000. Scaling in geothermal heat pump systems.Geo - Heat Center Quart Bull. 21(1), 11-15.
  • Rees, S. 2016. Advances in ground - source heat pump systems. Amsterdam: Woodhead Publishing.
  • Reiter, M. 2006. Vadose zone temperature measurements at a site in the northern Albuquerque Basin indicate ground-surface warming due to urbanization, Environmental and Engineering Geoscience 12, 353-360.
  • Rybach, L., Sanner, B. 2000. Ground - source heat pump systems: the European experience. Geo-Heat Center Quart Bull 21(1), 16-26.
  • Sanner, B. 2019. Summary of EGC 2019 Country Update Reports on Geothermal Energy in Europe, European Geothermal Congress 11-14 June 2019, Den Haag, The Netherlands.
  • Sanner, B. 2001. Shallow geothermal energy. Geo-Heat Center Quart Bull 22(2), 19-25.
  • Sanner, B., Karytsas, C., Mendrinos, D., Rybach, L. 2003. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 32, 579-588.
  • Soltani, M., Kashkooli, F. M., Dehghani-Sanij, A. R., Kazemi, A. R., Bordbar, N., Farschi, M. J., Elmi, M., Gharali, K., Dusseault, M. B. 2019. A comprehensive study of geothermal heating and cooling systems. Sustainable Cities and Society 44, 793-818. Spronken-Smith, R. A., Oke, T. R. 1999. The thermal regime of urban parks in two cities with different summer climates. International Journal of Remote Sensing 19, 2085- 2104.
  • Stauffer, F., Bayer, P., Blum, P., Giraldo, N. M., Kinzelbach, W. 2013. Thermal use of shallow groundwater. CRC Press.
  • Taniguchi, M. 2006. Anthropogenic effects on subsurface temperature in Bangkok. Climate of Past Discussions 2, 831-846. Taniguchi, M., Uemura, T. 2005. Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Physics of the Earth and Planetary Interiors 305-313.
  • Taniguchi, M., Shimada J., Tanaka, T., Kayane, I., Sakura, Y., Shimano, Y., Kawashima, S. 1999. Disturbances of temperature-depth profiles due to climate change and subsurface water flow: 1. An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Water Resour. Res. 35, 137-152.
  • Taniguchi, M., Uemura, T., Jago-on, K. 2007. Combined effects of urbanization and global warming on subsurface temperature in four Asian cities,Vadose Zone Journal 6, 591-596.
  • Taniguchi, M., Shimada, J., Fukuda, Y., Yamano, M., Onodera, S., Kaneko, S., Yoshikoshi, A. 2009. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand. Science of Total Environment 407, 3153-3164.
  • Türkiye İstatistik Kurumu (TÜİK), 2019. İl ve ilçelere göre il/ilçe merkezi, belde/köy nüfusu ve yıllık nüfus artış hızı verileri.
  • VDI (Verein Deutscher Igneieure), 2004. VDI 4640/4 Thermal Use of the Underground-Direct Uses.
  • VDI (Verein Deutscher Igneieure), 2010. VDI 4640 Thermal Use of Underground, Blatt 1: Fundamentals, Approvals, Environmental Aspects.
  • Yalçın, T., Yetemen, O. 2009. Local warming of groundwaters caused by the urban heat island effect in İstanbul, Turkey. Hydrogeology Journal 17, 1247-1255.
  • Zhu, K., Blum, P, Ferguson, G., Balke, K-D., Bayer, P. 2010. The geothermal potential of urban heat islands.Environmental Research Letters 5, 6.
There are 66 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Samet Öngen This is me 0000-0002-4019-7157

Zeynal Abiddin Ergüler This is me 0000-0003-2324-7746

Publication Date August 19, 2021
Published in Issue Year 2021 Volume: 165 Issue: 165

Cite

APA Öngen, A. S., & Ergüler, Z. A. (2021). The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey. Bulletin of the Mineral Research and Exploration, 165(165), 217-234. https://doi.org/10.19111/bulletinofmre.820395
AMA Öngen AS, Ergüler ZA. The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey. Bull.Min.Res.Exp. August 2021;165(165):217-234. doi:10.19111/bulletinofmre.820395
Chicago Öngen, Ali Samet, and Zeynal Abiddin Ergüler. “The Effect of Urban Heat Island on Groundwater Located in Shallow Aquifers of Kütahya City Center and Shallow Geothermal Energy Potential of the Region, Turkey”. Bulletin of the Mineral Research and Exploration 165, no. 165 (August 2021): 217-34. https://doi.org/10.19111/bulletinofmre.820395.
EndNote Öngen AS, Ergüler ZA (August 1, 2021) The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey. Bulletin of the Mineral Research and Exploration 165 165 217–234.
IEEE A. S. Öngen and Z. A. Ergüler, “The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey”, Bull.Min.Res.Exp., vol. 165, no. 165, pp. 217–234, 2021, doi: 10.19111/bulletinofmre.820395.
ISNAD Öngen, Ali Samet - Ergüler, Zeynal Abiddin. “The Effect of Urban Heat Island on Groundwater Located in Shallow Aquifers of Kütahya City Center and Shallow Geothermal Energy Potential of the Region, Turkey”. Bulletin of the Mineral Research and Exploration 165/165 (August 2021), 217-234. https://doi.org/10.19111/bulletinofmre.820395.
JAMA Öngen AS, Ergüler ZA. The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey. Bull.Min.Res.Exp. 2021;165:217–234.
MLA Öngen, Ali Samet and Zeynal Abiddin Ergüler. “The Effect of Urban Heat Island on Groundwater Located in Shallow Aquifers of Kütahya City Center and Shallow Geothermal Energy Potential of the Region, Turkey”. Bulletin of the Mineral Research and Exploration, vol. 165, no. 165, 2021, pp. 217-34, doi:10.19111/bulletinofmre.820395.
Vancouver Öngen AS, Ergüler ZA. The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey. Bull.Min.Res.Exp. 2021;165(165):217-34.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en