Research Article
BibTex RIS Cite

The relationship between seismic quality factor and peak ground acceleration, a case study: M=4.3, 17.01.2015 Eskişehir Earthquake

Year 2021, Volume: 166 Issue: 166, 127 - 144, 15.12.2021
https://doi.org/10.19111/bulletinofmre.841785

Abstract

Seismic wave propagation in subsurface media endures from absorption, which can be evaluated by the seismic quality factor Q (Q-factor). Absorption is frequency-dependent. Lower frequencies are absorbed less, while higher frequencies are absorbed more. Therefore, the Q Factor should be determined in the frequency domain. Q-factor is determined by the slope of the natural logarithm of the output-input signals ratio. Surface waves (Rayleigh and Love waves) are particularly important, as they are the more destructive phases of an earthquake. This study was focused on the Q-factor computation of the surface waves and demonstrated that the determination of the Q-factor is not affected from the dispersive properties of the surface waves. Data were obtained from surface wave signals of earthquake recorded at Eskişehir Technical University Seismic Network - EstuNet. The obtained Q-factor values represent the average values of the rocks that the waves cross between the input and output stations. Finally, the Q-factor map to the Peak Ground Acceleration (PGA) map using the M=4.3, 17.01.2015 Eskişehir earthquake data was compared. These records, show the arrival time of the earthquake from the epicenter to the stations of the seismic waves, and the peak ground acceleration values. In this study, local site effects of EstuNet accelerometric stations have been calculated by using the Standard Spectral Ratio (SSR) method. It is concluded that an inverse relationship exists between the computed Q-factor and measured PGA values. Therefore, the sites where the Q factor is very low should be analyzed in more detail in ground-based earthquake risk assessments.

Supporting Institution

Anadolu University Research Fund

Project Number

1705F255

Thanks

This work was supported by the Anadolu University Research Fund under Project Numbers 1705F255. I would like to thank Prof. Dr. Berkan ECEVİTOĞLU (Eskişehir Technical University, Eskişehir) for sharing with us his experience related to seismic interpretation.

References

  • Anderson, D. L., Archambeau, C. B. 1964. The anelasticity of the earth. Journal of Geophysical Research 69(10), 2071- 2084.
  • Anderson, D. L., Kovach, R. L. 1964. Attenuation in the mantle and rigidity of the core from multiply reflected core phases. Proceedings of the National Academy of Sciences 51(2), 168-172.
  • Anderson, D. L., Hart, R. 1978. Q of the Earth. Journal of Geophysical Research: Solid Earth 83(B12), 5869-5882.
  • Bano, M. 1996. Q-phase compensation of seismic records in the frequency domain. Bulletin of the Seismological Society of America 86(4), 1179-1186.
  • Bath, M. 1974. Spectral Analysis in Geophysics: Elsevier Science Publication Cooperation, Amsterdam.
  • Barton, N. 2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy. CRC Press, 721.
  • Borcherdt, R. D. 1970. Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America 60, 29-61.
  • Borcherdt, R. D. 1989. Results and data from seismologic and geologic studies following earthquakes of December 7, 1988, near Spitak, Armenia SSR (No. 89-163-A). US Geological Survey.
  • Blias, E. 2012. Accurate interval Q-factor estimation from VSP data. Geophysics 77(3), WA149-WA156.
  • Christensen, N. I. 1996. Poisson’s ratio and crustal seismology. Journal of Geophysical Research Solid Earth 101, 3139-3156.
  • Dasgupta, R., Clark, R. A., 1998. Estimation of Q from surface seismic reflection data. Geophysics 63(6), 2120-2128.
  • Dasios, A., Astin, McCann, T. C. 2001. Compressional- wave Q estimation from fullwaveform sonic data. Geophysical Prospecting 49(3), 353-373.
  • De Castro Nunes, B. I., De Medeiros, W. E., Do Nascimento, A. F., Moreira, J. A. M. 2011. Estimating quality factor from surface seismic data: a comparison of current approaches. Journal of Applied Geophysics 75(2), 161-170.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F. 2013. Active fault map of Turkey with explanatory text. General Directorate of Mineral Research and Exploration, Special Publication Series 30, Ankara, Turkey.
  • Engelhard, L. 1996. Determination of seismic-wave attenuation by complex trace analysis. Geophysical Journal International 125(2), 608-622.
  • Ersoy, İ. 1956. Eskişehir Depremi, ARKİTEKT, 74-75.
  • Field, E., Jacob, K., Hough, S. 1992. Earthquake site response estimation: a weak-motion case study, Bulletin of the Seismological Society of America 82, 2283-2307.
  • Futterman, W. I. 1962. Dispersive body waves. Journal of Geophysical Research 67(13), 5279-5291.
  • Gok, E., Chávez-García, F.J., Polat, O. 2014. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey. Physics of the Earth and Planetary Interiors 229, 88-97.
  • Gurevich, B., Pevzner, R. 2015. How frequency dependency of Q affects spectral ratio estimates. Geophysics 80, A39- A44.
  • Jackson, D. D., Anderson, D. L. 1970. Physical mechanisms of seismic-wave attenuation. Reviews of Geophysics 8(1), 1-63.
  • Johnston, D. H., Toksöz, M., Timur, A. 1979. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 44, 691-711.
  • Jongmans, D. 1990. In-situ attenuation measurements in soils, Engineering Geology 29, 99-118.
  • Kanai, K., Tanaka, T., Osada, K. 1954. Measurement of the microtremor I, Bulletin of the Earthquake Research Institute of Tokyo 32, 199-209.
  • Kjartansson, E. 1979. Constant Q-wave propagation and attenuation. Journal of Geophysical Research: Solid Earth 84(B9), 4737-4748.
  • Knopoff, L. 1964. Department of Physics and Institute of Geophysics and Planetary Physics University of California, Los Angeles. Reviews of Geophysics 2(4), 625-660.
  • Li, J., Wang, S., Yang, D., Dong, C., Tao, Y., Zhou, Y. 2016. An improved Q estimation approach: the weighted centroid frequency shift method. Journal of Geophysics and Engineering 13(3), 399.
  • Luzi, L., D’Amico, M., Massa, M., Puglia, R. 2019. Site effects observed in the Norcia intermountain basin (Central Italy) exploiting a 20-year monitoring. Bulletin of Earthquake Engineering 17, 97-118.
  • Mayoral, J., Asimaki, D., Tepalcapa, S., Wood, C., Roman- de la Sancha, A., Hutchinson, T., Franke, K., Montalva, G. 2019. Site effects in Mexico City basin: past and present. Soil Dynamics and Earthquake Engineering 121, 369-382.
  • Mittal, H., Kumar, A., Kumar, R. 2015. Analysis of ground motion in Delhi from earthquakes recorded by strong motion network, Arabian Journal of Geosciences 8, 2005-2017.
  • Miyakoshi, H., Tsuno, S., Chimoto, K., Yamanaka, H. 2019. Investigation of site amplification factors for S-and P-waves from spectral inversions in the Tokyo metropolitan area, Japan—for application to earthquake early warnings. Journal of Seismology 23(3), 561-578.
  • Moya, A., Irikura, K. 2003. Estimation of site effects and Q factor using a reference event. Bulletin of the Seismological Society of America 93, 1730-1745.
  • Naresh, B., Venkatesh, K., Mishra, L. K. 2019. Q-factor of the Punjab Basin. International Journal of Scientific Research and Review 7(9).
  • Orhan, A., Seyrek, E., Tosun, H. 2007. A probabilistic approach for earthquake hazard assessment of the Province of Eskişehir, Turkey, Natural Hazards and Earth System Science 7, 607-614.
  • Özer, Ç. 2019. Erzurum ve çevresinin yerel zemin etkilerinin incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21, 247-257.
  • Özmen, B. 2000. Ağustos 1999 İzmit Körfezi depreminin hasar durumu (rakamsal verilerle). Türkiye Deprem Vakfı 010-53, 132.
  • Parolai, S. 2012. Investigation of site response in urban areas by using earthquake data and seismic noise, New Manual of Seismological Observatory Practice 2, 1-38.
  • Press, F. 1964. Seismic wave attenuation in the crust. Journal of Geophysical Research 69(20), 4417-4418.
  • Quan, Y., Harris, J. M. 1997. Seismic attenuation tomography using the frequency shift method. Geophysics 62(3), 895- 905.
  • Raghukanth, S., Nadh Somala, S. 2009. Modeling of strong-motion data in northeastern India: Q, stress drop, and site amplification. Bulletin of the Seismological Society of America 99, 705-725.
  • Ricker, N. 1940. The form and nature of seismic waves and the structure of seismograms, Geophysics 5, 348- 366.
  • Sams, M., Goldberg, D. 1990. The validity of Q estimates from borehole data using spectral ratios. Geophysics 55(1), 97-101.
  • Seyitoğlu, G., Ecevitoğlu, G. B., Kaypak, B., Güney, Y., Tün, M., Esat, K., Avdan, U., Temel, A., Çabuk, A., Telsiz, S., Aldaş, G. 2015. Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: a hypothesis tested by seismic reflection studies. Turkish Journal of Earth Sciences 24, 1-20.
  • Shearer, P. M. 2009. Introduction to Seismology, 241-300.
  • Stein, S., Wysession, M. 2009. An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell Publishing, John Wiley and Sons, 515.
  • Steidl, J. H., Tumarkin, A. G., Archuleta, R. J. 1996. What is a reference site? Bulletin of the Seismological Society of America 86, 1733-1748.
  • Şaroğlu, F., Emre, Ö., Kuşcu, İ. 1992. Active fault map of Turkey with explanatory text, Mineral Research and Exploration General Directorate, Ankara, Turkey.
  • Tün, M. 2013. Interpretation of ground response and shear wave velocity (Vs) structure in microzonation studies: a case study in Eskişehir. PhD Thesis, İstanbul University.
  • Tün, M., Mutlu, S., Pekkan, E. 2020. EstuNet: A new weak/ strong-motion network with Geodatabase for Metropolitan Eskişehir and Bursa, West Anatolia, Turkey. Journal of Earthquake Research 2(2), 193-208.
  • Wang, Y. 2004. Q analysis on reflection seismic data.Geophysical Research Letters 31(17).
  • Wang, Y., Guo, J. 2004. Modified Kolsky model for seismic attenuation and dispersion. Journal of Geophysics and Engineering 1(3), 187.
  • Yang, J., Cao, S., Yuan, D., Zhang, H., Shi, W. 2014. A new method for quality factor Q estimation: spectrum attributes method. 2014 SEG Annual Meeting.
  • Zhang, C., Ulrych, T. J. 2002. Estimation of quality factors from CMP records. Geophysics 67(5), 1542-1547.
Year 2021, Volume: 166 Issue: 166, 127 - 144, 15.12.2021
https://doi.org/10.19111/bulletinofmre.841785

Abstract

Project Number

1705F255

References

  • Anderson, D. L., Archambeau, C. B. 1964. The anelasticity of the earth. Journal of Geophysical Research 69(10), 2071- 2084.
  • Anderson, D. L., Kovach, R. L. 1964. Attenuation in the mantle and rigidity of the core from multiply reflected core phases. Proceedings of the National Academy of Sciences 51(2), 168-172.
  • Anderson, D. L., Hart, R. 1978. Q of the Earth. Journal of Geophysical Research: Solid Earth 83(B12), 5869-5882.
  • Bano, M. 1996. Q-phase compensation of seismic records in the frequency domain. Bulletin of the Seismological Society of America 86(4), 1179-1186.
  • Bath, M. 1974. Spectral Analysis in Geophysics: Elsevier Science Publication Cooperation, Amsterdam.
  • Barton, N. 2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy. CRC Press, 721.
  • Borcherdt, R. D. 1970. Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America 60, 29-61.
  • Borcherdt, R. D. 1989. Results and data from seismologic and geologic studies following earthquakes of December 7, 1988, near Spitak, Armenia SSR (No. 89-163-A). US Geological Survey.
  • Blias, E. 2012. Accurate interval Q-factor estimation from VSP data. Geophysics 77(3), WA149-WA156.
  • Christensen, N. I. 1996. Poisson’s ratio and crustal seismology. Journal of Geophysical Research Solid Earth 101, 3139-3156.
  • Dasgupta, R., Clark, R. A., 1998. Estimation of Q from surface seismic reflection data. Geophysics 63(6), 2120-2128.
  • Dasios, A., Astin, McCann, T. C. 2001. Compressional- wave Q estimation from fullwaveform sonic data. Geophysical Prospecting 49(3), 353-373.
  • De Castro Nunes, B. I., De Medeiros, W. E., Do Nascimento, A. F., Moreira, J. A. M. 2011. Estimating quality factor from surface seismic data: a comparison of current approaches. Journal of Applied Geophysics 75(2), 161-170.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F. 2013. Active fault map of Turkey with explanatory text. General Directorate of Mineral Research and Exploration, Special Publication Series 30, Ankara, Turkey.
  • Engelhard, L. 1996. Determination of seismic-wave attenuation by complex trace analysis. Geophysical Journal International 125(2), 608-622.
  • Ersoy, İ. 1956. Eskişehir Depremi, ARKİTEKT, 74-75.
  • Field, E., Jacob, K., Hough, S. 1992. Earthquake site response estimation: a weak-motion case study, Bulletin of the Seismological Society of America 82, 2283-2307.
  • Futterman, W. I. 1962. Dispersive body waves. Journal of Geophysical Research 67(13), 5279-5291.
  • Gok, E., Chávez-García, F.J., Polat, O. 2014. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey. Physics of the Earth and Planetary Interiors 229, 88-97.
  • Gurevich, B., Pevzner, R. 2015. How frequency dependency of Q affects spectral ratio estimates. Geophysics 80, A39- A44.
  • Jackson, D. D., Anderson, D. L. 1970. Physical mechanisms of seismic-wave attenuation. Reviews of Geophysics 8(1), 1-63.
  • Johnston, D. H., Toksöz, M., Timur, A. 1979. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 44, 691-711.
  • Jongmans, D. 1990. In-situ attenuation measurements in soils, Engineering Geology 29, 99-118.
  • Kanai, K., Tanaka, T., Osada, K. 1954. Measurement of the microtremor I, Bulletin of the Earthquake Research Institute of Tokyo 32, 199-209.
  • Kjartansson, E. 1979. Constant Q-wave propagation and attenuation. Journal of Geophysical Research: Solid Earth 84(B9), 4737-4748.
  • Knopoff, L. 1964. Department of Physics and Institute of Geophysics and Planetary Physics University of California, Los Angeles. Reviews of Geophysics 2(4), 625-660.
  • Li, J., Wang, S., Yang, D., Dong, C., Tao, Y., Zhou, Y. 2016. An improved Q estimation approach: the weighted centroid frequency shift method. Journal of Geophysics and Engineering 13(3), 399.
  • Luzi, L., D’Amico, M., Massa, M., Puglia, R. 2019. Site effects observed in the Norcia intermountain basin (Central Italy) exploiting a 20-year monitoring. Bulletin of Earthquake Engineering 17, 97-118.
  • Mayoral, J., Asimaki, D., Tepalcapa, S., Wood, C., Roman- de la Sancha, A., Hutchinson, T., Franke, K., Montalva, G. 2019. Site effects in Mexico City basin: past and present. Soil Dynamics and Earthquake Engineering 121, 369-382.
  • Mittal, H., Kumar, A., Kumar, R. 2015. Analysis of ground motion in Delhi from earthquakes recorded by strong motion network, Arabian Journal of Geosciences 8, 2005-2017.
  • Miyakoshi, H., Tsuno, S., Chimoto, K., Yamanaka, H. 2019. Investigation of site amplification factors for S-and P-waves from spectral inversions in the Tokyo metropolitan area, Japan—for application to earthquake early warnings. Journal of Seismology 23(3), 561-578.
  • Moya, A., Irikura, K. 2003. Estimation of site effects and Q factor using a reference event. Bulletin of the Seismological Society of America 93, 1730-1745.
  • Naresh, B., Venkatesh, K., Mishra, L. K. 2019. Q-factor of the Punjab Basin. International Journal of Scientific Research and Review 7(9).
  • Orhan, A., Seyrek, E., Tosun, H. 2007. A probabilistic approach for earthquake hazard assessment of the Province of Eskişehir, Turkey, Natural Hazards and Earth System Science 7, 607-614.
  • Özer, Ç. 2019. Erzurum ve çevresinin yerel zemin etkilerinin incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21, 247-257.
  • Özmen, B. 2000. Ağustos 1999 İzmit Körfezi depreminin hasar durumu (rakamsal verilerle). Türkiye Deprem Vakfı 010-53, 132.
  • Parolai, S. 2012. Investigation of site response in urban areas by using earthquake data and seismic noise, New Manual of Seismological Observatory Practice 2, 1-38.
  • Press, F. 1964. Seismic wave attenuation in the crust. Journal of Geophysical Research 69(20), 4417-4418.
  • Quan, Y., Harris, J. M. 1997. Seismic attenuation tomography using the frequency shift method. Geophysics 62(3), 895- 905.
  • Raghukanth, S., Nadh Somala, S. 2009. Modeling of strong-motion data in northeastern India: Q, stress drop, and site amplification. Bulletin of the Seismological Society of America 99, 705-725.
  • Ricker, N. 1940. The form and nature of seismic waves and the structure of seismograms, Geophysics 5, 348- 366.
  • Sams, M., Goldberg, D. 1990. The validity of Q estimates from borehole data using spectral ratios. Geophysics 55(1), 97-101.
  • Seyitoğlu, G., Ecevitoğlu, G. B., Kaypak, B., Güney, Y., Tün, M., Esat, K., Avdan, U., Temel, A., Çabuk, A., Telsiz, S., Aldaş, G. 2015. Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: a hypothesis tested by seismic reflection studies. Turkish Journal of Earth Sciences 24, 1-20.
  • Shearer, P. M. 2009. Introduction to Seismology, 241-300.
  • Stein, S., Wysession, M. 2009. An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell Publishing, John Wiley and Sons, 515.
  • Steidl, J. H., Tumarkin, A. G., Archuleta, R. J. 1996. What is a reference site? Bulletin of the Seismological Society of America 86, 1733-1748.
  • Şaroğlu, F., Emre, Ö., Kuşcu, İ. 1992. Active fault map of Turkey with explanatory text, Mineral Research and Exploration General Directorate, Ankara, Turkey.
  • Tün, M. 2013. Interpretation of ground response and shear wave velocity (Vs) structure in microzonation studies: a case study in Eskişehir. PhD Thesis, İstanbul University.
  • Tün, M., Mutlu, S., Pekkan, E. 2020. EstuNet: A new weak/ strong-motion network with Geodatabase for Metropolitan Eskişehir and Bursa, West Anatolia, Turkey. Journal of Earthquake Research 2(2), 193-208.
  • Wang, Y. 2004. Q analysis on reflection seismic data.Geophysical Research Letters 31(17).
  • Wang, Y., Guo, J. 2004. Modified Kolsky model for seismic attenuation and dispersion. Journal of Geophysics and Engineering 1(3), 187.
  • Yang, J., Cao, S., Yuan, D., Zhang, H., Shi, W. 2014. A new method for quality factor Q estimation: spectrum attributes method. 2014 SEG Annual Meeting.
  • Zhang, C., Ulrych, T. J. 2002. Estimation of quality factors from CMP records. Geophysics 67(5), 1542-1547.
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muammer Tün 0000-0002-7118-9977

Project Number 1705F255
Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 166 Issue: 166

Cite

APA Tün, M. (2021). The relationship between seismic quality factor and peak ground acceleration, a case study: M=4.3, 17.01.2015 Eskişehir Earthquake. Bulletin of the Mineral Research and Exploration, 166(166), 127-144. https://doi.org/10.19111/bulletinofmre.841785
AMA Tün M. The relationship between seismic quality factor and peak ground acceleration, a case study: M=4.3, 17.01.2015 Eskişehir Earthquake. Bull.Min.Res.Exp. December 2021;166(166):127-144. doi:10.19111/bulletinofmre.841785
Chicago Tün, Muammer. “The Relationship Between Seismic Quality Factor and Peak Ground Acceleration, a Case Study: M=4.3, 17.01.2015 Eskişehir Earthquake”. Bulletin of the Mineral Research and Exploration 166, no. 166 (December 2021): 127-44. https://doi.org/10.19111/bulletinofmre.841785.
EndNote Tün M (December 1, 2021) The relationship between seismic quality factor and peak ground acceleration, a case study: M=4.3, 17.01.2015 Eskişehir Earthquake. Bulletin of the Mineral Research and Exploration 166 166 127–144.
IEEE M. Tün, “The relationship between seismic quality factor and peak ground acceleration, a case study: M=4.3, 17.01.2015 Eskişehir Earthquake”, Bull.Min.Res.Exp., vol. 166, no. 166, pp. 127–144, 2021, doi: 10.19111/bulletinofmre.841785.
ISNAD Tün, Muammer. “The Relationship Between Seismic Quality Factor and Peak Ground Acceleration, a Case Study: M=4.3, 17.01.2015 Eskişehir Earthquake”. Bulletin of the Mineral Research and Exploration 166/166 (December 2021), 127-144. https://doi.org/10.19111/bulletinofmre.841785.
JAMA Tün M. The relationship between seismic quality factor and peak ground acceleration, a case study: M=4.3, 17.01.2015 Eskişehir Earthquake. Bull.Min.Res.Exp. 2021;166:127–144.
MLA Tün, Muammer. “The Relationship Between Seismic Quality Factor and Peak Ground Acceleration, a Case Study: M=4.3, 17.01.2015 Eskişehir Earthquake”. Bulletin of the Mineral Research and Exploration, vol. 166, no. 166, 2021, pp. 127-44, doi:10.19111/bulletinofmre.841785.
Vancouver Tün M. The relationship between seismic quality factor and peak ground acceleration, a case study: M=4.3, 17.01.2015 Eskişehir Earthquake. Bull.Min.Res.Exp. 2021;166(166):127-44.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en