Short Communication
BibTex RIS Cite

Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments

Year 2022, Volume: 168 Issue: 168, 157 - 165, 18.08.2022
https://doi.org/10.19111/bulletinofmre.947703

Abstract

ICP-OES and LA-ICP-MS instruments routinely used to assess the geochemical properties of the various natural and synthetic materials. In this contribution, the analytical routines and method development procedures of the ICP-OES and LA-ICP-MS facilities installed at the İstanbul University-Cerrahpaşa Geological Engineering Department, Geochronology and Geochemistry Laboratory have been evaluated using well-known international rock standards. Sample preparation techniques, method development, experimental setup and measurement conditions for the both ICP-OES and LA-ICP-MS instruments were discussed and specific analyze results of NIST SRM 614, BCR-2, AGV-2, BCR-2G and AGV-2G were evaluated. Flux-free USGS glass standards were produced by in-house techniques and flux-bearing glasses were produced by fusion of sample with the mixture of ultra-pure lithium-tetraborate, lithium metaborate and lithiumbromide were evaluated and compared with the well-known reference values in the literature. Relative standard deviation (RSD) values for the major oxide measurements for standards changes between of 0.0 wt. % to 1.5 wt. %. RSD values for the trace and rare-earth-elements values were mainly lower than 10 wt. %. The results confirm that the both flux-bearing and flux-free glasses reasonably match with the world-wide inter-laboratory values for international standards samples. The combination of these two instruments can be used to conduct geochemistry of various solid earth materials.

Supporting Institution

Istanbul University - Cerrahpaşa

Thanks

This work was supported by the Research Funds of the İstanbul University - Cerrahpaşa, project number: 23384.

References

  • Alomary, A. A., Belhadj, S. 2007. Determination of heavy metals Cd, Cr, Cu, Fe, Ni, Pb, Zn by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment 135, 1-3, 265-280.
  • Chen, Z., Canil, D., Longerich, H. P. 2000. Automated in situ trace element analysis of silicate materials by laser ablation inductively coupled plasma mass spectrometry. Fresenius’ Journal of Analytical Chemistry 368, 73-78.
  • Dahlquist, R. L, Knoll, J. W. 1978. Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major, trace, and ultra-trace elements. Applied Spectroscopy 32, 1-30.
  • Eggins, S. M. 2003. Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostandards Newsletter 27, 147-162.
  • Elburg, M. A., Andersen, T., Bons, P. D., Weisheit, A., Simonsen, S. L., Smet, I. 2012. Metasomatism and metallogeny of A-type granites of the MtPainter–Mt Babbage Inliers, South Australia. Lithos 151, 83-104.
  • Fedorowich, J. S., Richards, J. P., Jain, J. C., Kerrich, R., Fan, J. 1993. A rapid method for REE and trace- element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chemical Geology 106(3-4), 229-249.
  • Georem database. http://georem.mpch-mainz.gwdg.de/start. asp?dataversion=current. 27 Şubat 2021.
  • Govindaraju, K. 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1-158.
  • Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., Yardley, B. W. 2008. A Matlab-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40, 328-333.
  • Günther, D., Quadt, A. V., Wirz, R., Cousin, H., Dietrich, V. J. 2001. Elemental analyses using laser ablation- inductively coupled plasma-mass spectrometry LA-ICP-MS of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards. Microchimica Acta 136(3-4), 101-107.
  • Imai, N. 1990. Quantitative analysis of original and powdered rocks and mineral inclusions by laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta 235, 381-391.
  • Jarvis, I., Jarvis, K. E. 1992. Inductively coupled plasma- atomic emission spectrometry in exploration geochemistry. Journal of Geochemical Exploration 44(1-3), 139-200.
  • Jenner, G. A., Longerich, H. P., Jackson, S. E., Fryer, B. J. 1990. ICP-MS—a powerful tool for high- precision trace-element analysis in Earth sciences: Evidence from analysis of selected USGS reference samples. Chemical Geology 83(1-2), 133-148.
  • Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Enzweiler, J. 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35(4), 397-429.
  • Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Enzweiler, J. 2016 . Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research 40(3), 333-350.
  • Kurosawa, M., Shima, K., Ishii, S., Sasa, K. 2006. Trace element analysis of fused whole-rock glasses by laser ablation-ICP-MS and PIXE. Geostandards and Geoanalytical Research 30(1), 17-30.
  • Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., Chen, H.2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA- ICP-MS. Chinese Science Bulletin 55(15), 1535-1546.
  • Liu, Y., Hu, Z., Li, M., Gao, S. 2013. Applications of LA- ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin 58(32), 3863-3878.
  • Longerich, H. P., Jackson, S. E., Günther, D. 1996. Inter- laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11(9), 899-904.
  • Mendeley Database. https://data.mendeley.com/datasets/ tfxzf3v44s/draft?a=d0b2dfde-46dd-4c6b-b024- ea27310b85e1. 27 Şubat 2021.
  • Navarro, M. S., Ulbrich, H. H. G. J., Andrade, S., Janasi, V. A. 2002. Adaptation of ICP–OES routine determination techniques for the analysis of rare earth elements by chromatographic separation in geologic materials: tests with reference materials and granitic rocks. Journal of Alloys and Compounds 344(1-2), 40-45.
  • Norman, M. D., Pearson, N. J., Sharma, A., Griffin, W. L. 1996. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter 20(2), 247-261.
  • Pearce, J. A., Harris, N. B., Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25(4), 956-983.
  • Perkin Elmer Syngistix Software. https://www. perkinelmer.com/ lab-solutions/resources/ docs/PRD_Syngistix-Atomic-Spec- Software- Family_011968_01.pdf . 27 Şubat 2021.
  • Petrelli, M., Perugini, D., Alagna, K. E., Poli, G., Peccerillo, A. 2008. Spatially resolved and bulk trace element analysis by laser ablation-inductively coupled plasma-mass spectrometry LA-ICP-MS . co di Mineralogia 77(3), 3-21.
  • Potts, P. J., Webb, P. C. 1992. X-ray fluorescence spectrometry. Journal of Geochemical Exploration 44(1-3), 251-296.
  • Shao, F., Niu, Y., Liu, Y., Chen, S., Kong, J., Duan, M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 282, 33-44.
  • Tamura, A., Akizawa, N., Otsuka, R., Kanayama, K., Python, M., Morishita, T., Arai, S. 2015. Measurement of whole-rock trace-element composition by flux- free fused glass and LA-ICP-MS: evaluation of simple and rapid routine work. Geochemical Journal 49(3), 243-258.
  • Wilson, S. 2017. USGS microanalytical reference materials MRMS development. Microscopy and Microanalysis 23, 492-493.
Year 2022, Volume: 168 Issue: 168, 157 - 165, 18.08.2022
https://doi.org/10.19111/bulletinofmre.947703

Abstract

References

  • Alomary, A. A., Belhadj, S. 2007. Determination of heavy metals Cd, Cr, Cu, Fe, Ni, Pb, Zn by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment 135, 1-3, 265-280.
  • Chen, Z., Canil, D., Longerich, H. P. 2000. Automated in situ trace element analysis of silicate materials by laser ablation inductively coupled plasma mass spectrometry. Fresenius’ Journal of Analytical Chemistry 368, 73-78.
  • Dahlquist, R. L, Knoll, J. W. 1978. Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major, trace, and ultra-trace elements. Applied Spectroscopy 32, 1-30.
  • Eggins, S. M. 2003. Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostandards Newsletter 27, 147-162.
  • Elburg, M. A., Andersen, T., Bons, P. D., Weisheit, A., Simonsen, S. L., Smet, I. 2012. Metasomatism and metallogeny of A-type granites of the MtPainter–Mt Babbage Inliers, South Australia. Lithos 151, 83-104.
  • Fedorowich, J. S., Richards, J. P., Jain, J. C., Kerrich, R., Fan, J. 1993. A rapid method for REE and trace- element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chemical Geology 106(3-4), 229-249.
  • Georem database. http://georem.mpch-mainz.gwdg.de/start. asp?dataversion=current. 27 Şubat 2021.
  • Govindaraju, K. 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1-158.
  • Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., Yardley, B. W. 2008. A Matlab-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40, 328-333.
  • Günther, D., Quadt, A. V., Wirz, R., Cousin, H., Dietrich, V. J. 2001. Elemental analyses using laser ablation- inductively coupled plasma-mass spectrometry LA-ICP-MS of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards. Microchimica Acta 136(3-4), 101-107.
  • Imai, N. 1990. Quantitative analysis of original and powdered rocks and mineral inclusions by laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta 235, 381-391.
  • Jarvis, I., Jarvis, K. E. 1992. Inductively coupled plasma- atomic emission spectrometry in exploration geochemistry. Journal of Geochemical Exploration 44(1-3), 139-200.
  • Jenner, G. A., Longerich, H. P., Jackson, S. E., Fryer, B. J. 1990. ICP-MS—a powerful tool for high- precision trace-element analysis in Earth sciences: Evidence from analysis of selected USGS reference samples. Chemical Geology 83(1-2), 133-148.
  • Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Enzweiler, J. 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35(4), 397-429.
  • Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Enzweiler, J. 2016 . Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research 40(3), 333-350.
  • Kurosawa, M., Shima, K., Ishii, S., Sasa, K. 2006. Trace element analysis of fused whole-rock glasses by laser ablation-ICP-MS and PIXE. Geostandards and Geoanalytical Research 30(1), 17-30.
  • Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., Chen, H.2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA- ICP-MS. Chinese Science Bulletin 55(15), 1535-1546.
  • Liu, Y., Hu, Z., Li, M., Gao, S. 2013. Applications of LA- ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin 58(32), 3863-3878.
  • Longerich, H. P., Jackson, S. E., Günther, D. 1996. Inter- laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11(9), 899-904.
  • Mendeley Database. https://data.mendeley.com/datasets/ tfxzf3v44s/draft?a=d0b2dfde-46dd-4c6b-b024- ea27310b85e1. 27 Şubat 2021.
  • Navarro, M. S., Ulbrich, H. H. G. J., Andrade, S., Janasi, V. A. 2002. Adaptation of ICP–OES routine determination techniques for the analysis of rare earth elements by chromatographic separation in geologic materials: tests with reference materials and granitic rocks. Journal of Alloys and Compounds 344(1-2), 40-45.
  • Norman, M. D., Pearson, N. J., Sharma, A., Griffin, W. L. 1996. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter 20(2), 247-261.
  • Pearce, J. A., Harris, N. B., Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25(4), 956-983.
  • Perkin Elmer Syngistix Software. https://www. perkinelmer.com/ lab-solutions/resources/ docs/PRD_Syngistix-Atomic-Spec- Software- Family_011968_01.pdf . 27 Şubat 2021.
  • Petrelli, M., Perugini, D., Alagna, K. E., Poli, G., Peccerillo, A. 2008. Spatially resolved and bulk trace element analysis by laser ablation-inductively coupled plasma-mass spectrometry LA-ICP-MS . co di Mineralogia 77(3), 3-21.
  • Potts, P. J., Webb, P. C. 1992. X-ray fluorescence spectrometry. Journal of Geochemical Exploration 44(1-3), 251-296.
  • Shao, F., Niu, Y., Liu, Y., Chen, S., Kong, J., Duan, M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 282, 33-44.
  • Tamura, A., Akizawa, N., Otsuka, R., Kanayama, K., Python, M., Morishita, T., Arai, S. 2015. Measurement of whole-rock trace-element composition by flux- free fused glass and LA-ICP-MS: evaluation of simple and rapid routine work. Geochemical Journal 49(3), 243-258.
  • Wilson, S. 2017. USGS microanalytical reference materials MRMS development. Microscopy and Microanalysis 23, 492-493.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gönenç GÖÇMENGİL 0000-0002-1955-8026

Fatma ŞİŞMAN TÜKEL

Fulya UZUN 0000-0003-0105-2083

Marcel GUILLONG This is me 0000-0002-6920-3362

İsak YILMAZ 0000-0003-3313-3275

Namık AYSAL This is me 0000-0001-9669-7305

Nurullah HANİLÇİ 0000-0002-7720-1551

Project Number 23384
Publication Date August 18, 2022
Published in Issue Year 2022 Volume: 168 Issue: 168

Cite

APA GÖÇMENGİL, G., ŞİŞMAN TÜKEL, F., UZUN, F., GUILLONG, M., et al. (2022). Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments. Bulletin of the Mineral Research and Exploration, 168(168), 157-165. https://doi.org/10.19111/bulletinofmre.947703
AMA GÖÇMENGİL G, ŞİŞMAN TÜKEL F, UZUN F, GUILLONG M, YILMAZ İ, AYSAL N, HANİLÇİ N. Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments. Bull.Min.Res.Exp. August 2022;168(168):157-165. doi:10.19111/bulletinofmre.947703
Chicago GÖÇMENGİL, Gönenç, Fatma ŞİŞMAN TÜKEL, Fulya UZUN, Marcel GUILLONG, İsak YILMAZ, Namık AYSAL, and Nurullah HANİLÇİ. “Accurate Whole-Rock Geochemistry Analysis by Combined ICP-OES and LA-ICP-MS Instruments”. Bulletin of the Mineral Research and Exploration 168, no. 168 (August 2022): 157-65. https://doi.org/10.19111/bulletinofmre.947703.
EndNote GÖÇMENGİL G, ŞİŞMAN TÜKEL F, UZUN F, GUILLONG M, YILMAZ İ, AYSAL N, HANİLÇİ N (August 1, 2022) Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments. Bulletin of the Mineral Research and Exploration 168 168 157–165.
IEEE G. GÖÇMENGİL, “Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments”, Bull.Min.Res.Exp., vol. 168, no. 168, pp. 157–165, 2022, doi: 10.19111/bulletinofmre.947703.
ISNAD GÖÇMENGİL, Gönenç et al. “Accurate Whole-Rock Geochemistry Analysis by Combined ICP-OES and LA-ICP-MS Instruments”. Bulletin of the Mineral Research and Exploration 168/168 (August 2022), 157-165. https://doi.org/10.19111/bulletinofmre.947703.
JAMA GÖÇMENGİL G, ŞİŞMAN TÜKEL F, UZUN F, GUILLONG M, YILMAZ İ, AYSAL N, HANİLÇİ N. Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments. Bull.Min.Res.Exp. 2022;168:157–165.
MLA GÖÇMENGİL, Gönenç et al. “Accurate Whole-Rock Geochemistry Analysis by Combined ICP-OES and LA-ICP-MS Instruments”. Bulletin of the Mineral Research and Exploration, vol. 168, no. 168, 2022, pp. 157-65, doi:10.19111/bulletinofmre.947703.
Vancouver GÖÇMENGİL G, ŞİŞMAN TÜKEL F, UZUN F, GUILLONG M, YILMAZ İ, AYSAL N, HANİLÇİ N. Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments. Bull.Min.Res.Exp. 2022;168(168):157-65.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en