Research Article
BibTex RIS Cite

Evaluation of current earthquake activity on the Ganos Fault: MONGAN network test analysis

Year 2023, Volume: 170 Issue: 170, 99 - 116, 17.04.2023
https://doi.org/10.19111/bulletinofmre.1138208

Abstract

The Monitoring of the Ganos Fault data presents significant opportunities and challenges for earthquake detection, location and magnitude calculations, source mechanism solutions, and discovery of fault zone waves. This study indicates mostly of preliminary data analysis and seismological evaluations. While narrow distance aperture installation has an opportunity to detect microearthquakes, it also causes significant difficulties in determining the source parameters of micro-earthquakes. Extracting microearthquakes from continuous data shows that special strategies need to be used. MONGAN data revealed the presence of many earthquakes with magnitude M<1.0 in the study region. These earthquakes are mostly out of network earthquakes and it is very difficult to obtain reliable solutions due to the insufficient azimuthal distribution of the stations. It is obvious that different network techniques and wave particle motion analyzes are contributed to the location and source parameters. Although the fault zone structure consists of two different lithologies that make significant differences in seismic wave phase arrival times and wave amplitudes, we observe fault zone head waves on both sides along the Ganos fault. Moment tensor analyzes depict that reliable source mechanism solutions can be obtained using a small number of station records.

Supporting Institution

This work is supported by TÜBİTAK-BMBF bilateral cooperation project number 118R019.

Project Number

project number 118R019.

Thanks

We would like to thank Patricia Martinez GARZON, Virgine DURAND, Amandine AMEMOUTOU, Felix KASTNER for their valuable contributions during the establishment of the MONGAN network. Moreover, we are also thankful to Mr. Sevim AVCI, Tekirdağ Metropolitan Municipality, and Dr. Murat NURLU, AFAD Presidency and Head of Earthquake Department who provide precious support to the field studies. This work is supported by TÜBİTAK-BMBF bilateral cooperation project number 118R019.

References

  • Aksoy, M. E., Meghraoui, M., Vallée, M., Çakır, Z. 2010. Rupture characteristics of the AD 1912 Mürefte (Ganos) earthquake segment of the North Anatolian Fault (western Turkey). Geology 38(11), 991-994.
  • Aksoy, M. E. 2021. The 9 August 1912 Mürefte-Şarköy earthquake of the North Anatolian fault. Mediterranean Geoscience Reviews 3, 95–114.
  • Allam., A. A., Ben-Zion, Y., Peng, Z. 2014. Seismic imaging of a bimaterial interface along the Hayward Fault, CA, with Fault Zone Head waves and direkt P arrivals. Pure and Applied Geophysics 171, 2993-3011.
  • Allen, R. 1978. Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America 68, 1521-1532.
  • Andrews, D. J., Ben-Zion, Y. 1997. Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research 102, 553–571.
  • Armijo, R., Pondard, N., Meyer, B., Uçarkus, G., Mercier de Lépinay, B., Malavieille, J., Dominguez, S., Gutscher, M-A., Schmidt, S., Beck, C., Cagatay, N., Cakir, Z., Imren, C., Eris, K., Natalin, B., Özalaybey, S., Tolun, L., Lefèvre, I., Seeber, L., Gasperini, L., Rangin, C., Emre, O., Sarikavak, K. 2005. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): implications for seismic hazard in Istanbul. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society 6, Q06009.
  • Ben-Zion, Y. 1989. The response of two joined quarter spaces to SH line sources located at the material discontinuity interface. Geophysical Journal International 98, 213–222.
  • Ben-Zion, Y. 1990. The response of two half spaces to point dislocations at the material interface. Geophysical Journal International 101, 507–528.
  • Ben-Zion, Y., Aki, K. 1990. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bulletin of the Seismological Society of America 80(4), 971-994.
  • Ben-Zion, Y., Malin, P. 1991. San Andreas fault zone head waves near Parkfield, California. Science 251, 1592–1594.
  • Bennington, N. L., Thurber, C., Peng, Z., Zhang H., Zhao P. 2013. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California. Journal of Geophysical Research: Solid Earth 118, 1008-1014.
  • Bentz, S., Martínez‐Garzón, P., Kwiatek, G., Dresen, G., Bohnhoff, M. 2019. Analysis of microseismicity framing ML > 2.5 earthquakes at The Geysers geothermal field, California. Journal of Geophysical Research: Solid Earth 124, 8823–8843.
  • Bohnhoff, M., Bulut, F., Dresen, G., Malin, P. E., Eken, T., Aktar, M. 2013. An earthquake gap south of Istanbul. Nature Communication 4, 1999.
  • Bohnhoff, M., Martínez-Garzón, P., Bulut, F., Stierle, E., Ben-Zion, Y. 2016. Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics 674, 147–165.
  • Bohnhoff, M., Wollin, C., Domigall, D., Küperkoch, L., Martínez-Garzón, P., Kwiatek, G., Dresen, G., Malin, P. E. 2017. Repeating Marmara Sea earthquakes: indication for fault creep. Geophysical Journal International 210(1), 332–339.
  • Bouchon, M. 1981. A simple method to calculate Green's functions for elastic layered media. Bulletin of the Seismological Society of America 71(4), 959–971.
  • Bulut, F., Ben-Zion, Y., Bohnhoff, M. 2012. Evidence for a bimaterial interface along the Mudurnu segment of the North Anatolian fault zone from polarization analysis of P waves. Earth and Planetary Science Letters 327, 17–22.
  • Bulut, F., Aktuğ, B., Yaltırak, C., Doğru, A., Özener, H. 2019. Magnitudes of future large earthquakes near Istanbul quantified from 1500 years of historical earthquakes, present-day microseismicity and GPS slip rates. Tectonophysics 764, 77-87.
  • Ergintav, S., Reilinger, R. E., Çakmak, R., Floyd, M., Cakir, Z., Doğan, U., King, R. W., McClusky, S., and Özener, H. 2014. Istanbul's earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters 41, 5783– 5788.
  • Fojtíková, L., Vavryáuk, V., Cipciar, A., Madarás, J. 2010. Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians), Slovakia. Tectonophysics 492(1-4), 213-229.
  • Gibbons, S. J., Ringdal, F. 2006. The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International 165, 149–166.
  • Havskov, J., Ottemoller, L. 1999. SeisAn Earthquake Analysis Software. Seismological Research Letters 70, 532–534.
  • Havskov, J., Ottemøller L. 2010. Routine Data Processing in Earthquake Seismology. Springer, 347.
  • Kalafat, D., Gürbüz, C., Üçer, S.B. 1987. Batı Türkiye’de kabuk ve üst manto yapısının araştırılması. Deprem Araştırma Bülteni 59, 43-64.
  • Kikuchi, M., Kanamori, H. 1991. Inversion of complex body waves. III. Bulletin of the Seismological Society of America 81, 2335–2350.
  • Lange, D., Kopp, H., Royer, J.Y., Henry, P., Çakir, Z., Petersen, F., Sakic, P., Ballu, V., Bialas, J., Özeren, M.S., Ergintav, S., Géli, L. 2019. Interseismic strain build-up on the submarine North Anatolian Fault offshore Istanbul. Nature Communications 10(1), 3006.
  • Li, Y. G., Leary, P. C. 1990. Fault zone trapped seismic waves, Bulletin of the Seismological Society of America 80(5), 1245-1271.
  • Lienert, B. R., Havskov, J. 1995. A computer program for locating earthquakes both locally and globally. Seismological Research Letters 66(5), 26-36.
  • Mcclusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H.G., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Veis, G. 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105, 5695-5719.
  • McGuire, J. Ben-Zion, Y. 2005. High-resolution imaging of the bear valley section of the San Andreas fault at seismogenic depths with faultzone head waves and relocated seismicity. Geophysical Journal International 163, 152–164.
  • Okay, A., Özcan, E., Cavazza, W., Okay, N., Less, G. 2010. Basement Types, Lower Eocene Series, Upper Eocene Olistostromes and the Initiation of the Southern Thrace Basin, NW Turkey. Turkish Journal of Earth Sciences 19, 1–25.
  • Özalaybey, S. 2010. Marmara Denizi’nde depremsellik gözlem altyapı kapasitesinin güncellenmesi sonuç raporu, TÜBİTAK, Proje No: CAYDAG-105Y369.
  • Ross, Z. E., Ben-Zion, Y. 2014. Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International 199(1), 268-381.
  • Sakic, P., Piété, H., Ballu, V., Royer, J. Y., Kopp, H., Lange, D., Petersen, F., Özeren, M. S., Ergintav, S., Geli, L., Henry, P., Deschamps, A. 2016. No significant steady state surface creep along the North Anatolian Fault offshore Istanbul: results of 6 months of seafloor acoustic ranging. Geophysical Research Letters 43(13), 6817–6825.
  • Saragiotis, C., Hadjileontiadis, L. Panas, S. 2002. PAI-S/K: a robust automatic seismic P phase arrival identification scheme. IEEE Transactions on Geoscience and Remote Sensing 40, 1395–1404.
  • Schmittbuhl, J., Karabulut, H., Lengliné, O., Bouchon, M. 2016. Seismicity distribution and locking depth along the main Marmara Fault. Turkish Geochemistry, Geophysics, Geosystems 17, 954–965.
  • Sokos, E., Zahradník, J. 2008. ISOLA- A Fortran code and Matlab GUI to perform multiplepoint source inversion of seismic data. Computers and Geosciences 34, 967–977.
  • Stein, R. S., Barka, A. A., Dieterich, J. H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International 128, 594–604.
  • Uchida, N., Kalafat, D., Pinar, A., Yamamoto, Y. 2019. Repeating earthquakes and interplate coupling along the western part of the North Anatolian Fault. Tectonophysics 769, 228185.
  • Uçarkuş, G., Çakır, Z., Armijo, R. 2011. Western termination of the Mw 7.4, 1999 İzmit earthquake rupture: Implications for the expected large earthquake in the Sea of Marmara. Turkish Journal of Earth Sciences 20, 379–394.
  • Wollin, C., Bohnhoff, M., Martínez-Garzón, P., Küperkoch, L., Raub, C. 2018. A unified earthquake catalogue for the Sea of Marmara Region, Turkey, based on automatized phase picking and travel-time inversion: seismotectonic implications. Tectonophysics 747-748, 416-444.
  • Yalçınkaya, E., Bohnhoff, M., Görgün, E., Alp, H., Bentz, S., Pınar, A., Alver, F., Kılıçarslan, Ö., Tamtaş, B.D., Görgün, B. 2022. Ganos fayı güncel deprem etkinliğinin değerlendirilmesi: MONGAN sismik ağ yapısı ve veri kalitesi. Hacettepe Yerilimleri Dergisi 43(1), 37-60.
  • Yilmazer, M. 2003. Deprem kaynak parametrelerinin online belirlenmesi, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Jeofizik Mühendisliği Ana Bilim Dalı, İstanbul, 57.
  • Yamamoto, Y., Takahashi, N., Citak, S., Kalafat, D., Pinar, A., Gurbuz, C., Kaneda, Y. 2015. Offshore seismicity in the western Marmara Sea, Turkey, revealed by ocean bottom observation. Earth Planets Space 67, 147.
  • Yamamoto, Y., Takahashi, N., Pinar, A., Kalafat, A., Citak, S., Comoglu, M., Polat, R., Kaneda, Y. 2017. Geometry and segmentation of the North Anatolian Fault beneath the Marmara Sea, Turkey, deduced from long-term ocean bottom seismographic observations. Journal of Geophysical Research: Solid Earth 122.
  • Yamamoto, R., Kido, M., Ohta, Y., Takahashi, N., Yamamoto, Y., Pinar, A., Kalafat, D., Özener, H., Kaneda, Y. 2019. Seafloor geodesy revealed partial creep of the North Anatolian Fault submerged in the sea of Marmara. Geophysical Research Letters 46(3), 1268–1275.
  • Yamamoto, Y., Kalafat, D., Pinar, A., Takahashi, N., Polat, R., Kaneda, Y., Ozener, H. 2022. Seismic velocity structure along the North Anatolian Fault beneath the Central Marmara Sea and its implication for seismogenesis. Geophysical Journal International 228(1), 396–411.
  • Yoon, C. E., O’Reilly, O., Bergen, K. J., Beroza, G. C. 2015. Earthquake detection through computationally efficient similarity search. Science Advances 1, e1501057.
Year 2023, Volume: 170 Issue: 170, 99 - 116, 17.04.2023
https://doi.org/10.19111/bulletinofmre.1138208

Abstract

Project Number

project number 118R019.

References

  • Aksoy, M. E., Meghraoui, M., Vallée, M., Çakır, Z. 2010. Rupture characteristics of the AD 1912 Mürefte (Ganos) earthquake segment of the North Anatolian Fault (western Turkey). Geology 38(11), 991-994.
  • Aksoy, M. E. 2021. The 9 August 1912 Mürefte-Şarköy earthquake of the North Anatolian fault. Mediterranean Geoscience Reviews 3, 95–114.
  • Allam., A. A., Ben-Zion, Y., Peng, Z. 2014. Seismic imaging of a bimaterial interface along the Hayward Fault, CA, with Fault Zone Head waves and direkt P arrivals. Pure and Applied Geophysics 171, 2993-3011.
  • Allen, R. 1978. Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America 68, 1521-1532.
  • Andrews, D. J., Ben-Zion, Y. 1997. Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research 102, 553–571.
  • Armijo, R., Pondard, N., Meyer, B., Uçarkus, G., Mercier de Lépinay, B., Malavieille, J., Dominguez, S., Gutscher, M-A., Schmidt, S., Beck, C., Cagatay, N., Cakir, Z., Imren, C., Eris, K., Natalin, B., Özalaybey, S., Tolun, L., Lefèvre, I., Seeber, L., Gasperini, L., Rangin, C., Emre, O., Sarikavak, K. 2005. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): implications for seismic hazard in Istanbul. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society 6, Q06009.
  • Ben-Zion, Y. 1989. The response of two joined quarter spaces to SH line sources located at the material discontinuity interface. Geophysical Journal International 98, 213–222.
  • Ben-Zion, Y. 1990. The response of two half spaces to point dislocations at the material interface. Geophysical Journal International 101, 507–528.
  • Ben-Zion, Y., Aki, K. 1990. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bulletin of the Seismological Society of America 80(4), 971-994.
  • Ben-Zion, Y., Malin, P. 1991. San Andreas fault zone head waves near Parkfield, California. Science 251, 1592–1594.
  • Bennington, N. L., Thurber, C., Peng, Z., Zhang H., Zhao P. 2013. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California. Journal of Geophysical Research: Solid Earth 118, 1008-1014.
  • Bentz, S., Martínez‐Garzón, P., Kwiatek, G., Dresen, G., Bohnhoff, M. 2019. Analysis of microseismicity framing ML > 2.5 earthquakes at The Geysers geothermal field, California. Journal of Geophysical Research: Solid Earth 124, 8823–8843.
  • Bohnhoff, M., Bulut, F., Dresen, G., Malin, P. E., Eken, T., Aktar, M. 2013. An earthquake gap south of Istanbul. Nature Communication 4, 1999.
  • Bohnhoff, M., Martínez-Garzón, P., Bulut, F., Stierle, E., Ben-Zion, Y. 2016. Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics 674, 147–165.
  • Bohnhoff, M., Wollin, C., Domigall, D., Küperkoch, L., Martínez-Garzón, P., Kwiatek, G., Dresen, G., Malin, P. E. 2017. Repeating Marmara Sea earthquakes: indication for fault creep. Geophysical Journal International 210(1), 332–339.
  • Bouchon, M. 1981. A simple method to calculate Green's functions for elastic layered media. Bulletin of the Seismological Society of America 71(4), 959–971.
  • Bulut, F., Ben-Zion, Y., Bohnhoff, M. 2012. Evidence for a bimaterial interface along the Mudurnu segment of the North Anatolian fault zone from polarization analysis of P waves. Earth and Planetary Science Letters 327, 17–22.
  • Bulut, F., Aktuğ, B., Yaltırak, C., Doğru, A., Özener, H. 2019. Magnitudes of future large earthquakes near Istanbul quantified from 1500 years of historical earthquakes, present-day microseismicity and GPS slip rates. Tectonophysics 764, 77-87.
  • Ergintav, S., Reilinger, R. E., Çakmak, R., Floyd, M., Cakir, Z., Doğan, U., King, R. W., McClusky, S., and Özener, H. 2014. Istanbul's earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters 41, 5783– 5788.
  • Fojtíková, L., Vavryáuk, V., Cipciar, A., Madarás, J. 2010. Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians), Slovakia. Tectonophysics 492(1-4), 213-229.
  • Gibbons, S. J., Ringdal, F. 2006. The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International 165, 149–166.
  • Havskov, J., Ottemoller, L. 1999. SeisAn Earthquake Analysis Software. Seismological Research Letters 70, 532–534.
  • Havskov, J., Ottemøller L. 2010. Routine Data Processing in Earthquake Seismology. Springer, 347.
  • Kalafat, D., Gürbüz, C., Üçer, S.B. 1987. Batı Türkiye’de kabuk ve üst manto yapısının araştırılması. Deprem Araştırma Bülteni 59, 43-64.
  • Kikuchi, M., Kanamori, H. 1991. Inversion of complex body waves. III. Bulletin of the Seismological Society of America 81, 2335–2350.
  • Lange, D., Kopp, H., Royer, J.Y., Henry, P., Çakir, Z., Petersen, F., Sakic, P., Ballu, V., Bialas, J., Özeren, M.S., Ergintav, S., Géli, L. 2019. Interseismic strain build-up on the submarine North Anatolian Fault offshore Istanbul. Nature Communications 10(1), 3006.
  • Li, Y. G., Leary, P. C. 1990. Fault zone trapped seismic waves, Bulletin of the Seismological Society of America 80(5), 1245-1271.
  • Lienert, B. R., Havskov, J. 1995. A computer program for locating earthquakes both locally and globally. Seismological Research Letters 66(5), 26-36.
  • Mcclusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H.G., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Veis, G. 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105, 5695-5719.
  • McGuire, J. Ben-Zion, Y. 2005. High-resolution imaging of the bear valley section of the San Andreas fault at seismogenic depths with faultzone head waves and relocated seismicity. Geophysical Journal International 163, 152–164.
  • Okay, A., Özcan, E., Cavazza, W., Okay, N., Less, G. 2010. Basement Types, Lower Eocene Series, Upper Eocene Olistostromes and the Initiation of the Southern Thrace Basin, NW Turkey. Turkish Journal of Earth Sciences 19, 1–25.
  • Özalaybey, S. 2010. Marmara Denizi’nde depremsellik gözlem altyapı kapasitesinin güncellenmesi sonuç raporu, TÜBİTAK, Proje No: CAYDAG-105Y369.
  • Ross, Z. E., Ben-Zion, Y. 2014. Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International 199(1), 268-381.
  • Sakic, P., Piété, H., Ballu, V., Royer, J. Y., Kopp, H., Lange, D., Petersen, F., Özeren, M. S., Ergintav, S., Geli, L., Henry, P., Deschamps, A. 2016. No significant steady state surface creep along the North Anatolian Fault offshore Istanbul: results of 6 months of seafloor acoustic ranging. Geophysical Research Letters 43(13), 6817–6825.
  • Saragiotis, C., Hadjileontiadis, L. Panas, S. 2002. PAI-S/K: a robust automatic seismic P phase arrival identification scheme. IEEE Transactions on Geoscience and Remote Sensing 40, 1395–1404.
  • Schmittbuhl, J., Karabulut, H., Lengliné, O., Bouchon, M. 2016. Seismicity distribution and locking depth along the main Marmara Fault. Turkish Geochemistry, Geophysics, Geosystems 17, 954–965.
  • Sokos, E., Zahradník, J. 2008. ISOLA- A Fortran code and Matlab GUI to perform multiplepoint source inversion of seismic data. Computers and Geosciences 34, 967–977.
  • Stein, R. S., Barka, A. A., Dieterich, J. H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International 128, 594–604.
  • Uchida, N., Kalafat, D., Pinar, A., Yamamoto, Y. 2019. Repeating earthquakes and interplate coupling along the western part of the North Anatolian Fault. Tectonophysics 769, 228185.
  • Uçarkuş, G., Çakır, Z., Armijo, R. 2011. Western termination of the Mw 7.4, 1999 İzmit earthquake rupture: Implications for the expected large earthquake in the Sea of Marmara. Turkish Journal of Earth Sciences 20, 379–394.
  • Wollin, C., Bohnhoff, M., Martínez-Garzón, P., Küperkoch, L., Raub, C. 2018. A unified earthquake catalogue for the Sea of Marmara Region, Turkey, based on automatized phase picking and travel-time inversion: seismotectonic implications. Tectonophysics 747-748, 416-444.
  • Yalçınkaya, E., Bohnhoff, M., Görgün, E., Alp, H., Bentz, S., Pınar, A., Alver, F., Kılıçarslan, Ö., Tamtaş, B.D., Görgün, B. 2022. Ganos fayı güncel deprem etkinliğinin değerlendirilmesi: MONGAN sismik ağ yapısı ve veri kalitesi. Hacettepe Yerilimleri Dergisi 43(1), 37-60.
  • Yilmazer, M. 2003. Deprem kaynak parametrelerinin online belirlenmesi, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Jeofizik Mühendisliği Ana Bilim Dalı, İstanbul, 57.
  • Yamamoto, Y., Takahashi, N., Citak, S., Kalafat, D., Pinar, A., Gurbuz, C., Kaneda, Y. 2015. Offshore seismicity in the western Marmara Sea, Turkey, revealed by ocean bottom observation. Earth Planets Space 67, 147.
  • Yamamoto, Y., Takahashi, N., Pinar, A., Kalafat, A., Citak, S., Comoglu, M., Polat, R., Kaneda, Y. 2017. Geometry and segmentation of the North Anatolian Fault beneath the Marmara Sea, Turkey, deduced from long-term ocean bottom seismographic observations. Journal of Geophysical Research: Solid Earth 122.
  • Yamamoto, R., Kido, M., Ohta, Y., Takahashi, N., Yamamoto, Y., Pinar, A., Kalafat, D., Özener, H., Kaneda, Y. 2019. Seafloor geodesy revealed partial creep of the North Anatolian Fault submerged in the sea of Marmara. Geophysical Research Letters 46(3), 1268–1275.
  • Yamamoto, Y., Kalafat, D., Pinar, A., Takahashi, N., Polat, R., Kaneda, Y., Ozener, H. 2022. Seismic velocity structure along the North Anatolian Fault beneath the Central Marmara Sea and its implication for seismogenesis. Geophysical Journal International 228(1), 396–411.
  • Yoon, C. E., O’Reilly, O., Bergen, K. J., Beroza, G. C. 2015. Earthquake detection through computationally efficient similarity search. Science Advances 1, e1501057.
There are 48 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Eşref Yalçınkaya This is me 0000-0003-0593-0656

Marco Bohnhoff This is me 0000-0001-7383-635X

Hakan Alp 0000-0002-8203-0806

Stephen Bentz This is me 0000-0003-3694-0443

Ali Pınar This is me 0000-0002-2641-7344

Fatih Alver This is me 0000-0003-0454-1958

Ömer Kılıçarslan This is me 0000-0002-2066-6470

Burçin Didem Tamtaş 0000-0001-7713-5067

Burçak Görgün This is me 0000-0003-0978-4617

Project Number project number 118R019.
Publication Date April 17, 2023
Published in Issue Year 2023 Volume: 170 Issue: 170

Cite

APA Yalçınkaya, E., Bohnhoff, M., Alp, H., Bentz, S., et al. (2023). Evaluation of current earthquake activity on the Ganos Fault: MONGAN network test analysis. Bulletin of the Mineral Research and Exploration, 170(170), 99-116. https://doi.org/10.19111/bulletinofmre.1138208
AMA Yalçınkaya E, Bohnhoff M, Alp H, Bentz S, Pınar A, Alver F, Kılıçarslan Ö, Tamtaş BD, Görgün B. Evaluation of current earthquake activity on the Ganos Fault: MONGAN network test analysis. Bull.Min.Res.Exp. April 2023;170(170):99-116. doi:10.19111/bulletinofmre.1138208
Chicago Yalçınkaya, Eşref, Marco Bohnhoff, Hakan Alp, Stephen Bentz, Ali Pınar, Fatih Alver, Ömer Kılıçarslan, Burçin Didem Tamtaş, and Burçak Görgün. “Evaluation of Current Earthquake Activity on the Ganos Fault: MONGAN Network Test Analysis”. Bulletin of the Mineral Research and Exploration 170, no. 170 (April 2023): 99-116. https://doi.org/10.19111/bulletinofmre.1138208.
EndNote Yalçınkaya E, Bohnhoff M, Alp H, Bentz S, Pınar A, Alver F, Kılıçarslan Ö, Tamtaş BD, Görgün B (April 1, 2023) Evaluation of current earthquake activity on the Ganos Fault: MONGAN network test analysis. Bulletin of the Mineral Research and Exploration 170 170 99–116.
IEEE E. Yalçınkaya, M. Bohnhoff, H. Alp, S. Bentz, A. Pınar, F. Alver, Ö. Kılıçarslan, B. D. Tamtaş, and B. Görgün, “Evaluation of current earthquake activity on the Ganos Fault: MONGAN network test analysis”, Bull.Min.Res.Exp., vol. 170, no. 170, pp. 99–116, 2023, doi: 10.19111/bulletinofmre.1138208.
ISNAD Yalçınkaya, Eşref et al. “Evaluation of Current Earthquake Activity on the Ganos Fault: MONGAN Network Test Analysis”. Bulletin of the Mineral Research and Exploration 170/170 (April 2023), 99-116. https://doi.org/10.19111/bulletinofmre.1138208.
JAMA Yalçınkaya E, Bohnhoff M, Alp H, Bentz S, Pınar A, Alver F, Kılıçarslan Ö, Tamtaş BD, Görgün B. Evaluation of current earthquake activity on the Ganos Fault: MONGAN network test analysis. Bull.Min.Res.Exp. 2023;170:99–116.
MLA Yalçınkaya, Eşref et al. “Evaluation of Current Earthquake Activity on the Ganos Fault: MONGAN Network Test Analysis”. Bulletin of the Mineral Research and Exploration, vol. 170, no. 170, 2023, pp. 99-116, doi:10.19111/bulletinofmre.1138208.
Vancouver Yalçınkaya E, Bohnhoff M, Alp H, Bentz S, Pınar A, Alver F, Kılıçarslan Ö, Tamtaş BD, Görgün B. Evaluation of current earthquake activity on the Ganos Fault: MONGAN network test analysis. Bull.Min.Res.Exp. 2023;170(170):99-116.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en