Research Article
BibTex RIS Cite

A brief overview on geothermal scaling

Year 2023, Volume: 171 Issue: 171, 185 - 203, 25.08.2023
https://doi.org/10.19111/bulletinofmre.1228900

Abstract

Hot spring waters are rich in terms of minerals. Since there are dramatic changes in thermodynamic parameters in geothermal power plants, such as a decrease in temperature and pressure, severe precipitation occurs throughout the system components in an uncontrolled manner. There are three main chemistries in deposits: carbonates (mainly calcium carbonates), silicates (metal silicates), and sulphides (antimony sulphide-stibnite). Energy harvesting is remarkably reduced out of the insulating nature of the deposit. Various actions need to be taken to mitigate this undesirable issue of scaling in geothermal systems. Geothermal systems are in fact quite complex, and the composition of brine and, accordingly, the chemistry of the deposit are not identical. Therefore, each system should be studied individually, and a tailor-made remedy should be developed. In this overview, the types of deposits in terms of chemistry and the actions (pH modification or antiscalant dosing) that should be taken to reduce scaling are mentioned, and potential chemistries of antiscalants are given.

References

  • Akhmedov, G.Y. 2009. Kinetics of growth of calcium carbonate deposits in geothermal systems. Thermal Engineering 56, 909–913.
  • Andhika, M., Castaneda, M. C. H., Regenspurg, S. 2015. Characterization of silica precipitation at geothermal conditions, in: World Geothermal Congress.
  • Ármannsson, H., Hardardóttir, V. 2010. Geochemicqal patterns in saline high temperature geothermal systems. Water-Rock Interaction 133–136.
  • Arnorsson, S. 1989. Deposition of calcium carbonate minerals from geothermal waters- Theoretical considerations. Geothermics 18, 33–39.
  • Baba A. 2015. Application of geothermal energy and its environmental problems in Turkey. International Journal of Global Environmental Issues 14, 321– 331.
  • Baba, A., Ármannsson, H. 2006. Environmental impact of the utilization of geothermal areas. Energy Sources, Part B: Economics, Planning and Policy 1, 267–278.
  • Baba, A., Chandrasekharam, D. 2022. Geothermal resources for sustainable development: A case study. International Journal of Energy Resources 46, 20501–20518.
  • Baba A., Sözbilir, H. 2012. Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey. Chemical Geology 334, 364–377.
  • Baba, A., Demir, M. M., Koç, G. A., Tuǧcu, C. 2015. Hydrogeological properties of hyper-saline geothermal brine and application of inhibiting siliceous scale via pH modification. Geothermics 53, 406–412.
  • Baba, A., Demir, M. M., Koç, G., Avcı, İ. 2020. Geothermal power plant system used as a line inhibitor to prevent the scaling of greenhouse gases emitted from the system. Patent number: WO2021145839A3.
  • Barelli, A., Corsi, R., del Pizzo, G., Scali, C. 1982. A twophase flow model for geothermal wells in the presence of non-condensable gas. Geothermics 11, 175–191.
  • Bott, T. R. 1995. Fouling of Heat Exchangers. Elsevier Science, 524.
  • Boulos, R. A., Zhang, F., Tjandra, E. S., Martin, A. D., Spagnoli, D., Raston, C. L. 2014. Spinning up the polymorphs of calcium carbonate. Scientific Reports 4.
  • Brophy, P. 1997. Environmental advantages to the utilization of geothermal energy. Renewable Energy.
  • Brown, K. 2011. Antimony and arsenic sulfide scaling in geothermal binary plants. International Workshop on Mineral Scaling.
  • Buscarlet, E., Richardson, I., Addison, S., Moon, H., Quinao, J. 2016. Geochemical Modelling of Plant and Reservoir Processes at the Ngatamariki Geothermal Field. 38th New Zealand Geothermal Workshop.
  • Cappetti, G., D’Olimpio, P., Sabatelli, F., Tarquini, B. 1995. Inhibition of antimony sulphide scale by chemical additives: laboratory and field test results. World Geothermal Congress, Firenze.
  • Chandrasekharam, D., Baba, A. 2022. Carbon dioxide emissions mitigation strategy through enhanced geothermal systems: western Anatolia, Turkey. Environmental Earth Sciences 81.
  • Chauhan, K., Patiyal, P., Chauhan, G. S., Sharma, P. 2014. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly (acrylic acid) as arms in dissolution of silica/silicate. Water Resources 56, 225–233.
  • Corsi, R. 1986. Scaling and corrosion in geothermal equipment: Problems and preventive measures. Geothermics 15, 839–856.
  • Çelik, A., Topçu, G., Baba, A., Akdoğan, Y., Şentürk, U., Demir, M. M. 2017. Experimental modeling of silicate-based geothermal deposits. Geothermics 69, 65–73.
  • Çiçek, A. 2020. The electric power production targeted unconventional geothermal systems (UGS), some conceptual designs and their thermodynamics classification. Bulletin of the Mineral Research and Exploration 163, 211–228.
  • Çiftçi, C., Karaburun, E., Tonkul, S., Baba, A., Demir, M. M., Yeşilnacar, M. İ. 2020. Testing the performance of various polymeric antiscalants for mitigation of Sb-Rich precipitates mimicking stibnite-based geothermal deposits. Geofluids 2020.
  • Daniloytseva, E. N., Pal’shin, V. A., Likhoshway, Y. V., Annekov, V. V. 2011. Condensation of silicic acid in the presence of co (1-vinylimidazole–acrylic acid). Advance Science Letter 4.
  • Deendarlianto, K., Itoi, R. 2021. Numerical study of the effects of CO2 gas in geothermal water on the fluid-flow characteristics in production wells. Engineering Applications of Computational Fluid Mechanics 15, 111–129.
  • Demadis, K. D. 2005. A structure/function study of polyaminoamide dendrimers as silica scale growth inhibitors. Journal of Chemical Technology and Biotechnology 80, 630–640.
  • Demadis, K. D. 2010. Recent developments in controlling silica and magnesium silicate foulants in industrial water systems. The Science and Technoloyg of Water Treatment, 179–203.
  • Demadis, K. D., Mavredaki, E. 2005. Green additives to enhance silica dissolution during water treatment. Environmental Chemistry Letters 3, 127–131.
  • Demadis, K. D., Stathoulopoulou, A. 2006. Solubility enhancement of silicate with polyamine/ polyammonium cationic macromolecules: Relevance to silica-laden process waters. Industrial and Engineering Chemistry Research 45, 4436–4440.
  • Demadis, K. D., Neofotistou, E. 2007. Synergistic effects of combinations of cationic polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica formation: A bioinspired approach. Chemistry of Materials 19, 581–587.
  • Demadis, K. D., Ketsetzi, A., Pachis, K., Ramos, V. M. 2008. Inhibitory effects of multicomponent, phosphonate-grafted, zwitterionic chitosan biomacromolecules on silicic acid condensation. Biomacromolecules 9, 3288–3293.
  • Demadis, K. D., Ketsetzi, A., Sarigiannidou, E. M. 2012a. Catalytic effect of magnesium ions on silicic acid polycondensation and inhibition strategies based on chelation. Industrial and Engineering Chemistry Research, 9032–9040.
  • Demadis, K. D., Somara, M., Mavredaki, E. 2012b. Additive-driven dissolution enhancement of colloidal silica. 3. fluorine-containing additives. Industrial and Engineering Chemistry Research 51, 2952–2962.
  • Demadis, K. D., Tsistraki, A., Popa, A., Ilia, G., Visa, A. 2012c. Promiscuous stabilisation behaviour of silicic acid by cationic macromolecules: The case of phosphonium-grafted dicationic ethylene oxide bolaamphiphiles. RSC Advances 2, 631–641.
  • Demir, M. M., Baba, A., Atilla, V., İnanli, M. 2014. Types of the scaling in hyper saline geothermal system in northwest Turkey. Geothermics 50, 1–9.
  • Dewey J. F., Şengör A. M. C. 1979. Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone. GSA Bulletin 90, 84–92.
  • Doğan, I., Demir, M. M., Baba, A. 2014. Scaling problem of the geothermal system in Turkey. Baba, A., Bundschuh, J., Chandrasekharam, D.(Ed.). Geothermal Systems and Energy Resources: Turkey and Greece. Sustainable Energy Development 7, CRC Press.
  • Ellis, A. J., Mahon, W. A. J. 1977. Chemistry and geothermal systems. Academic Press.
  • Fredd, C. N., Fogler, H. S. 1998. The influence of chelating agents on the kinetics of calcite dissolution. Journal of Colloid Interface Science 204, 187– 197.
  • Gallup, D. L. 1993. The use of reducing agents for control ferric silicate scale deposition. Geothermics 22, 39–48.
  • Gallup, D. L. 1997. Aluminum silicate scale formation and inhibition: Scale characterization and laboratory experiments. Geothermics 26, 4, 483–499.
  • Gallup, D. L. 2002. Investigations of organic inhibitors for silica scale control in geothermal brines. Geothermics 31, 415–430.
  • Gallup, D. L. 2011. Brine pH modification scale control technology. A review Mercury contamination in the oil and gas industry. GRC Transactions 35.
  • Gallup, D. L., Barcelon, E. 2005. Investigations of organic inhibitors for silica scale control from geothermal brines–II. Geothermics 34, 756–771.
  • Gallup, D. L., Sugiaman, F., Capuno, V., Manceau, A. 2003. Laboratory investigation of silica removal from geothermal brines to control silica scaling and produce usable silicates. Applied Geochemistry 18, 1597–1612.
  • Gill, J. S. 1993. Inhibition of silica-silicate deposit in industrial waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 74, 1, 101 – 106.
  • Gill, J. S. 2011. New Inhibitors for silica and calcium carbonate control in geothermal. International Workshop on Mineral Scaling.
  • Gören, A. Y., Topçu, G., Demir, M. M., Baba, A. 2021. Effect of high salinity and temperature on water– volcanic rock interaction. Environmental Earth Science 80.
  • Gunnarsson, I., Arnórsson, S. 2005. Impact of silica scaling on the efficiency of heat extraction from hightemperature geothermal fluids. Geothermics 34, 320–329.
  • Gunnlaugsson, E., Ármannsson, H., Thorhallsson, S., Steingrímsson, B. 2014. Problems in geothermaloperation_scaling and corrosion. Utilization of Low- and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization, 1–18.
  • Haklıdır, F. S. T., Balaban, T. Ö. 2019. A review of mineral precipitation and effective scale inhibition methods at geothermal power plants in West Anatolia (Turkey). Geothermics 80, 103–118.
  • Hibara, Y., Tazaki, S., Kuragasaki, M. 1990. Advanced H2S gas treatment system for geothermal power plant–“geothermal gas injection technology. Geothermal Science and Technology 2.
  • Hirowatari, K. 1996. Scale prevention method by brine acidification with biochemical reactors. Geothermics 25.
  • Hoyer, D., Kevin, K., Darrell, G. 1991. Salton Sea Unit 2-innovations and successes. Geothermal Resources Council - Transactions 15.
  • Ichikuni, M. 1983. Chemistry of silica formed from geothermal waters. Chikyukagaku 17, 137–141.
  • Ikeda, R., Ueda, A. 2017. Experimental field investigations of inhibitors for controlling silica scale in geothermal brine at the Sumikawa geothermal plant, Akita Prefecture, Japan. Geothermics 70, 305–313.
  • Inanli, M., Atilla, V. 2011. Metal silicate formation at Tuzla geothermal brine lines, in: Proceedings International Workshop on Mineral Scaling.
  • Karabelas, A. J, Andritsos, N., Koutsoukos, P. G. 2002. Scale formation in geothermal plants international summer school on direct application of geothermal energy scale formation in geothermal plants. International Summer School on Direct Application of Geothermal Energy.
  • Karaburun, E., Sözen, Y., Çiftçi, C., Sahin, H., Baba, A., Akbey, Ü., Yeşilnacar, M. İ., Erdim, E., Regenspurg, S., Demir, M. M. 2022. Experimental modeling of antimony sulfides-rich geothermal deposits and their solubility in the presence of polymeric antiscalants. Geothermics 104, 102452.
  • Kaypakoğlu, B., Sisman, M., Aksoy, N. 2012. Preventive methods for scaling and corrosion in geothermal fields. New Zealand Geothermal Workshop 2012 Proceedings.
  • Kevin, B. 2013. Mineral scaling in geothermal power production. Reykjavik, Iceland: United Nations University.
  • Kiyota, Y., Uchiyama, N. 2011. Silica scale prevention effects of brine pH modification at Hatchobaru power station, Japan. Proceedings International Workshop on Mineral Scaling.
  • Lee, B. H., Lin, C. K., Chuang, C. W., Liu, L., Lee, H., Liu, C. 2015. A test of calcium carbonate scale inhibition in Chingshui Geothermal Field, Taiwan. World Geothermal Congress.
  • Leitzell, K., Caud, N. 2021. Climate change widespread, rapid, and intensifying . Intergovernmental Panel on Climate Change.
  • Lichti, K. A., Brown, K. L. 2013. Prediction and Monitoring of Scaling and Corrosion in pH Adjusted Geothermal Brine Solutions. Corrosion.
  • Mahon, W. A. J. 1966. Silica in hot water discharged from drillholes at Wairakei, New Zealand. New Zealand Journal of Science 9, 135–144.
  • Mccartney, T. R., Gharaibeh, S., Shank, R. 2017. Improved methods for removal of silicate deposits. Heat Exchanger Fouling and Cleaning.
  • Mineral Research and Exploration Institute (MTA), 1980. Hot and mineral water inventory. Ankara.
  • Montanari, D., Minissale, A., Doveri, M., Gola, G., Trumpy, E., Santilano, A., Manzella, A. 1994. Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review. Earth Science Reviews 169, 180–201.
  • Mundhenk, N., Huttenloch, P., Sanjuan, B., Kohl, T., Steger, H., Zorn, R. 2013. Corrosion and scaling as interrelated phenomena in an operating geothermal power plant. Corrosion Science 70, 17–28.
  • Mutlu, H., Güleç, N. 1998. Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia (Turkey). Journal of Volcanology and Geothermal Research 85, 495–515.
  • Nancollas, G. 1982. Formation of Scales of Calcium Carbonate Polymorphs: The Influence of Magnesium Ion and Inhibitors.
  • Nassif, N., Livage, J. 2011. From diatoms to silica-based biohybrids. Chemical Society Reviews 40, 849– 859.
  • Neofotistou, E., Demadis, K. D. 2004. Silica scale inhibition by polyaminoamide STARBURST® dendrimers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 242, 213–216.
  • Öngen, A. S., Ergüler, Z. A. 2021. The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey. Bulletin of the Mineral Research and Exploration 165, 217–234.
  • Owen, L. B., Michels, D. E. 1984. Geochemical engineering reference manual.
  • Owusu, P. A., Asumadu-Sarkodie, S. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 3, 1.
  • Pambudi, N. A., Itoi, R., Yamashiro, R., Alam, B. Y. C. S., Tusara, L., Jalilinasrabady, S., Khasani, J. 2015. The behavior of silica in geothermal brine from Dieng geothermal power plant, Indonesia. Geothermics 54, 109–114.
  • Patzay, G., Karman, F. H., Pota, G. 2003. Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary. Geothermics 32, 627–638.
  • Petkowski, J. J., Bains, W., Seager, S. 2020. On the Potential of Silicon as a Building Block for Life. Life 10.
  • Petrucci, R. H., Herring, G. F., Madura, J. D., Bissonnette, C. 2011. General Chemistry: Principles and Modern Applications, 10th ed. Pearson Education.
  • Preari, M., Spinde, K., Lazic, J., Brunner, E., Demadis, K. D. 2014. Bioinspired Insights Into Silicic Acid Stabilization Mechanisms: The Dominant Role of Polyethylene Glycol-Induced Hydrogen Bonding. Journal of American Chemical Society 136.
  • Putranto, W. A., Umardhani, Y., Sulistyo, Yurianto, Bayuseno, A. P. 2018. Analysis of calcium carbonate polymorphs deposited in water piping system and the effect of tartaric acid additive. MATEC Web of Conferences.
  • Rafferty, K. 1999. Scaling in geothermal heat pump systems. Idaho Falls.
  • Ramos-Candelaria, M., Cabel, A. C., Buñing, B. C., Noriega, M. T. 2000. Calcite inhibition field trials at the Mindanao Geothermal Production Field (MGPF), Philippines. World Geothermal Congress.
  • Rangel, G., Pereira, V., Ponte, C., Thorhallsson, S. 2019. Reaming calcite deposits of well PV8 while discharging: A successful operation at Riberia Grande geothermal field, Sáo Miguel Island, Azores, European Geothermal Congress.
  • Raymond, J., Williams-Jones, A. E., Clark, J. R. 2005. Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of Volcanology and Geothermal Research 145, 81– 96.
  • Reyes, A. G., Trompetter, W. J., Britten, K., Searle, J. 2003. Mineral deposits in the Rotokawa geothermal pipelines, New Zealand. Journal of Volcanology and Geothermal Research 119, 215–239.
  • Rose, P., Xu, T., Kovac, K., Mella, M., Pruess, K. 2007. Chemical stimulation in near-wellbore geothermal formations: Silica dissolution in the presence of calcite at high temperature and high pH. ThirtySecond Workshop on Geothermal Reservoir Engineering.
  • Ryley, D. 1980. The mass discharge of a geofluid from a geothermal reservoir—well system with flashing flow in the bore. Geothermics 9, 221–235.
  • Satman, A., Uğur, Z., Onur, M. 1999. The effect of calcite deposition on geothermal well inflow performance. Geothermics 28, 425–444.
  • Schwerin, D. L., Hatcher, J. D. 2022. Hydrofluoric Acid Burns. StatPearls Publishing.
  • Sener, F., Baba, A., Uzelli, T., Akkuş, İ., Mertoğlu, O. 2022. Geothermal Energy Strategy of Turkey.
  • Siega, F. L., Herras, E. B., Buñing, B. C. 2005. Calcite scale inhibition: The case of Mahanagdong wells in Leyte geothermal production field, Philippines. World Geothermal Congress.
  • Simmons, S. F., Christenson, B. W. 1994. Origins of calcite in a boiling geothermal system. American Journal of Science 294, 361–400.
  • Sousa, M. F., Bertran, C. A. 2014. New methodology based on staticlight scattering measurements for evaluation of inhibitors for in bulk crystallization. Journal of Colloid Interface Science 420, 57–64.
  • Spinde, K., Pachis, K., Antonakaki, I., Paasch, S., Brunner, E., Demadis, K. D. 2011. Influence of polyamines and related macromolecules on silicic acid polycondensation: Relevance to “soluble silicon pools”? Chemistry of Materials 23, 4676–4687.
  • Tobler, D. J., Benning, L. G. 2013. In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions. Geochim Cosmochim Acta 114, 156–168.
  • Tonkul, S., Baba, A., Demir, M. M., Regenspurg, S. 2021. Characterization of Sb scaling and fluids in saline geothermal power plants: A case study for Germencik Region (Büyük Menderes Graben, Turkey). Geothermics 96.
  • Topçu, G., Çelik, A., Baba, A., Demir, M. M. 2017. Design of polymeric antiscalants based on functional vinyl monomers for (Fe, Mg) silicates. Energy and Fuels 31.
  • Topçu, G., Çelik, A., Kandemir, A., Baba, A., Şahin, H., Demir, M. M. 2019a. Increasing solubility of metal silicates by mixed polymeric antiscalants. Geothermics 77, 106–114.
  • Topçu, G., Koç, G. A., Baba, A., Demir, M. M. 2019b. The injection of CO2 to hypersaline geothermal brine: A case study for Tuzla region. Geothermics 80, 86–91.
  • Tubular Exchanger Manufacturers Association, 1952. Standard of Tubular Exchanger Manufacturers Association.
  • Ueckert, M., Wismeth, C., Baumann, T. 2020. Crystallization of calcium carbonate in a large-scale push–pull heat storage test in the Upper Jurassic carbonate aquifer. Geothermal Energy 8.
  • Ueda, A., Kato, H., Miyauchi, T., Kato, K. 2003. Investigation of pH control method to avoid silica scaling in the Sumikawa geothermal field. Journal of the Geothermal Research Society of Japan 25, 163–177.
  • Utami, P. 2000. Characteristics of the Kamojang geothermal reservoir (West Java) as revealed by its hydrothermal alteration mineralogy. World Geothermal Congress.
  • Wangen, M., Sagen, J., Bjørnstad, T., Johansen, H., Souche, A. J. R. 2016. Models for calcium carbonate precipitation in the near-well zone by degassing of CO2. The Open Petroleum Engineering Journal 9, 178–194.
  • Wilson, N., Webster-Brown, J., Brown, K. 2007. Controls on stibnite precipitation at two New Zealand geothermal power stations. Geothermics 36, 330– 347.
  • Wong, L., Suratwala, T., Feit, M. D., Miller, P. E., Steele, R. 2009. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica. Journal of Non-Crystalline Solids 355, 797–810.
  • Yokoyama, T., Ueda, A., Kato, K., Mogi, K., Matsuo, S. 2002. A study of the alumina–silica gel adsorbent for the removal of silicic acid from geothermal water: increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid. Journal of Colloid and Interface Science 252, 1–5.
  • Zarrouk, S. J., Purnanto, M. H. 2014. Geothermal steamwater separators: Design overview. Geothermics 53, 236–254.
  • Zarrouk, S. J., Moon, H. 2014. Efficiency of geothermal power plants: A worldwide review. Geothermics 51, 142–153.
  • Zhang, B. R., Chen, Y. N., Li, F. T. 2011. Inhibitory effects of poly (adipic acid/amine-terminated polyether D230/diethylenetriamine) on colloidal silica formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 385, 11–19.
Year 2023, Volume: 171 Issue: 171, 185 - 203, 25.08.2023
https://doi.org/10.19111/bulletinofmre.1228900

Abstract

References

  • Akhmedov, G.Y. 2009. Kinetics of growth of calcium carbonate deposits in geothermal systems. Thermal Engineering 56, 909–913.
  • Andhika, M., Castaneda, M. C. H., Regenspurg, S. 2015. Characterization of silica precipitation at geothermal conditions, in: World Geothermal Congress.
  • Ármannsson, H., Hardardóttir, V. 2010. Geochemicqal patterns in saline high temperature geothermal systems. Water-Rock Interaction 133–136.
  • Arnorsson, S. 1989. Deposition of calcium carbonate minerals from geothermal waters- Theoretical considerations. Geothermics 18, 33–39.
  • Baba A. 2015. Application of geothermal energy and its environmental problems in Turkey. International Journal of Global Environmental Issues 14, 321– 331.
  • Baba, A., Ármannsson, H. 2006. Environmental impact of the utilization of geothermal areas. Energy Sources, Part B: Economics, Planning and Policy 1, 267–278.
  • Baba, A., Chandrasekharam, D. 2022. Geothermal resources for sustainable development: A case study. International Journal of Energy Resources 46, 20501–20518.
  • Baba A., Sözbilir, H. 2012. Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey. Chemical Geology 334, 364–377.
  • Baba, A., Demir, M. M., Koç, G. A., Tuǧcu, C. 2015. Hydrogeological properties of hyper-saline geothermal brine and application of inhibiting siliceous scale via pH modification. Geothermics 53, 406–412.
  • Baba, A., Demir, M. M., Koç, G., Avcı, İ. 2020. Geothermal power plant system used as a line inhibitor to prevent the scaling of greenhouse gases emitted from the system. Patent number: WO2021145839A3.
  • Barelli, A., Corsi, R., del Pizzo, G., Scali, C. 1982. A twophase flow model for geothermal wells in the presence of non-condensable gas. Geothermics 11, 175–191.
  • Bott, T. R. 1995. Fouling of Heat Exchangers. Elsevier Science, 524.
  • Boulos, R. A., Zhang, F., Tjandra, E. S., Martin, A. D., Spagnoli, D., Raston, C. L. 2014. Spinning up the polymorphs of calcium carbonate. Scientific Reports 4.
  • Brophy, P. 1997. Environmental advantages to the utilization of geothermal energy. Renewable Energy.
  • Brown, K. 2011. Antimony and arsenic sulfide scaling in geothermal binary plants. International Workshop on Mineral Scaling.
  • Buscarlet, E., Richardson, I., Addison, S., Moon, H., Quinao, J. 2016. Geochemical Modelling of Plant and Reservoir Processes at the Ngatamariki Geothermal Field. 38th New Zealand Geothermal Workshop.
  • Cappetti, G., D’Olimpio, P., Sabatelli, F., Tarquini, B. 1995. Inhibition of antimony sulphide scale by chemical additives: laboratory and field test results. World Geothermal Congress, Firenze.
  • Chandrasekharam, D., Baba, A. 2022. Carbon dioxide emissions mitigation strategy through enhanced geothermal systems: western Anatolia, Turkey. Environmental Earth Sciences 81.
  • Chauhan, K., Patiyal, P., Chauhan, G. S., Sharma, P. 2014. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly (acrylic acid) as arms in dissolution of silica/silicate. Water Resources 56, 225–233.
  • Corsi, R. 1986. Scaling and corrosion in geothermal equipment: Problems and preventive measures. Geothermics 15, 839–856.
  • Çelik, A., Topçu, G., Baba, A., Akdoğan, Y., Şentürk, U., Demir, M. M. 2017. Experimental modeling of silicate-based geothermal deposits. Geothermics 69, 65–73.
  • Çiçek, A. 2020. The electric power production targeted unconventional geothermal systems (UGS), some conceptual designs and their thermodynamics classification. Bulletin of the Mineral Research and Exploration 163, 211–228.
  • Çiftçi, C., Karaburun, E., Tonkul, S., Baba, A., Demir, M. M., Yeşilnacar, M. İ. 2020. Testing the performance of various polymeric antiscalants for mitigation of Sb-Rich precipitates mimicking stibnite-based geothermal deposits. Geofluids 2020.
  • Daniloytseva, E. N., Pal’shin, V. A., Likhoshway, Y. V., Annekov, V. V. 2011. Condensation of silicic acid in the presence of co (1-vinylimidazole–acrylic acid). Advance Science Letter 4.
  • Deendarlianto, K., Itoi, R. 2021. Numerical study of the effects of CO2 gas in geothermal water on the fluid-flow characteristics in production wells. Engineering Applications of Computational Fluid Mechanics 15, 111–129.
  • Demadis, K. D. 2005. A structure/function study of polyaminoamide dendrimers as silica scale growth inhibitors. Journal of Chemical Technology and Biotechnology 80, 630–640.
  • Demadis, K. D. 2010. Recent developments in controlling silica and magnesium silicate foulants in industrial water systems. The Science and Technoloyg of Water Treatment, 179–203.
  • Demadis, K. D., Mavredaki, E. 2005. Green additives to enhance silica dissolution during water treatment. Environmental Chemistry Letters 3, 127–131.
  • Demadis, K. D., Stathoulopoulou, A. 2006. Solubility enhancement of silicate with polyamine/ polyammonium cationic macromolecules: Relevance to silica-laden process waters. Industrial and Engineering Chemistry Research 45, 4436–4440.
  • Demadis, K. D., Neofotistou, E. 2007. Synergistic effects of combinations of cationic polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica formation: A bioinspired approach. Chemistry of Materials 19, 581–587.
  • Demadis, K. D., Ketsetzi, A., Pachis, K., Ramos, V. M. 2008. Inhibitory effects of multicomponent, phosphonate-grafted, zwitterionic chitosan biomacromolecules on silicic acid condensation. Biomacromolecules 9, 3288–3293.
  • Demadis, K. D., Ketsetzi, A., Sarigiannidou, E. M. 2012a. Catalytic effect of magnesium ions on silicic acid polycondensation and inhibition strategies based on chelation. Industrial and Engineering Chemistry Research, 9032–9040.
  • Demadis, K. D., Somara, M., Mavredaki, E. 2012b. Additive-driven dissolution enhancement of colloidal silica. 3. fluorine-containing additives. Industrial and Engineering Chemistry Research 51, 2952–2962.
  • Demadis, K. D., Tsistraki, A., Popa, A., Ilia, G., Visa, A. 2012c. Promiscuous stabilisation behaviour of silicic acid by cationic macromolecules: The case of phosphonium-grafted dicationic ethylene oxide bolaamphiphiles. RSC Advances 2, 631–641.
  • Demir, M. M., Baba, A., Atilla, V., İnanli, M. 2014. Types of the scaling in hyper saline geothermal system in northwest Turkey. Geothermics 50, 1–9.
  • Dewey J. F., Şengör A. M. C. 1979. Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone. GSA Bulletin 90, 84–92.
  • Doğan, I., Demir, M. M., Baba, A. 2014. Scaling problem of the geothermal system in Turkey. Baba, A., Bundschuh, J., Chandrasekharam, D.(Ed.). Geothermal Systems and Energy Resources: Turkey and Greece. Sustainable Energy Development 7, CRC Press.
  • Ellis, A. J., Mahon, W. A. J. 1977. Chemistry and geothermal systems. Academic Press.
  • Fredd, C. N., Fogler, H. S. 1998. The influence of chelating agents on the kinetics of calcite dissolution. Journal of Colloid Interface Science 204, 187– 197.
  • Gallup, D. L. 1993. The use of reducing agents for control ferric silicate scale deposition. Geothermics 22, 39–48.
  • Gallup, D. L. 1997. Aluminum silicate scale formation and inhibition: Scale characterization and laboratory experiments. Geothermics 26, 4, 483–499.
  • Gallup, D. L. 2002. Investigations of organic inhibitors for silica scale control in geothermal brines. Geothermics 31, 415–430.
  • Gallup, D. L. 2011. Brine pH modification scale control technology. A review Mercury contamination in the oil and gas industry. GRC Transactions 35.
  • Gallup, D. L., Barcelon, E. 2005. Investigations of organic inhibitors for silica scale control from geothermal brines–II. Geothermics 34, 756–771.
  • Gallup, D. L., Sugiaman, F., Capuno, V., Manceau, A. 2003. Laboratory investigation of silica removal from geothermal brines to control silica scaling and produce usable silicates. Applied Geochemistry 18, 1597–1612.
  • Gill, J. S. 1993. Inhibition of silica-silicate deposit in industrial waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 74, 1, 101 – 106.
  • Gill, J. S. 2011. New Inhibitors for silica and calcium carbonate control in geothermal. International Workshop on Mineral Scaling.
  • Gören, A. Y., Topçu, G., Demir, M. M., Baba, A. 2021. Effect of high salinity and temperature on water– volcanic rock interaction. Environmental Earth Science 80.
  • Gunnarsson, I., Arnórsson, S. 2005. Impact of silica scaling on the efficiency of heat extraction from hightemperature geothermal fluids. Geothermics 34, 320–329.
  • Gunnlaugsson, E., Ármannsson, H., Thorhallsson, S., Steingrímsson, B. 2014. Problems in geothermaloperation_scaling and corrosion. Utilization of Low- and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization, 1–18.
  • Haklıdır, F. S. T., Balaban, T. Ö. 2019. A review of mineral precipitation and effective scale inhibition methods at geothermal power plants in West Anatolia (Turkey). Geothermics 80, 103–118.
  • Hibara, Y., Tazaki, S., Kuragasaki, M. 1990. Advanced H2S gas treatment system for geothermal power plant–“geothermal gas injection technology. Geothermal Science and Technology 2.
  • Hirowatari, K. 1996. Scale prevention method by brine acidification with biochemical reactors. Geothermics 25.
  • Hoyer, D., Kevin, K., Darrell, G. 1991. Salton Sea Unit 2-innovations and successes. Geothermal Resources Council - Transactions 15.
  • Ichikuni, M. 1983. Chemistry of silica formed from geothermal waters. Chikyukagaku 17, 137–141.
  • Ikeda, R., Ueda, A. 2017. Experimental field investigations of inhibitors for controlling silica scale in geothermal brine at the Sumikawa geothermal plant, Akita Prefecture, Japan. Geothermics 70, 305–313.
  • Inanli, M., Atilla, V. 2011. Metal silicate formation at Tuzla geothermal brine lines, in: Proceedings International Workshop on Mineral Scaling.
  • Karabelas, A. J, Andritsos, N., Koutsoukos, P. G. 2002. Scale formation in geothermal plants international summer school on direct application of geothermal energy scale formation in geothermal plants. International Summer School on Direct Application of Geothermal Energy.
  • Karaburun, E., Sözen, Y., Çiftçi, C., Sahin, H., Baba, A., Akbey, Ü., Yeşilnacar, M. İ., Erdim, E., Regenspurg, S., Demir, M. M. 2022. Experimental modeling of antimony sulfides-rich geothermal deposits and their solubility in the presence of polymeric antiscalants. Geothermics 104, 102452.
  • Kaypakoğlu, B., Sisman, M., Aksoy, N. 2012. Preventive methods for scaling and corrosion in geothermal fields. New Zealand Geothermal Workshop 2012 Proceedings.
  • Kevin, B. 2013. Mineral scaling in geothermal power production. Reykjavik, Iceland: United Nations University.
  • Kiyota, Y., Uchiyama, N. 2011. Silica scale prevention effects of brine pH modification at Hatchobaru power station, Japan. Proceedings International Workshop on Mineral Scaling.
  • Lee, B. H., Lin, C. K., Chuang, C. W., Liu, L., Lee, H., Liu, C. 2015. A test of calcium carbonate scale inhibition in Chingshui Geothermal Field, Taiwan. World Geothermal Congress.
  • Leitzell, K., Caud, N. 2021. Climate change widespread, rapid, and intensifying . Intergovernmental Panel on Climate Change.
  • Lichti, K. A., Brown, K. L. 2013. Prediction and Monitoring of Scaling and Corrosion in pH Adjusted Geothermal Brine Solutions. Corrosion.
  • Mahon, W. A. J. 1966. Silica in hot water discharged from drillholes at Wairakei, New Zealand. New Zealand Journal of Science 9, 135–144.
  • Mccartney, T. R., Gharaibeh, S., Shank, R. 2017. Improved methods for removal of silicate deposits. Heat Exchanger Fouling and Cleaning.
  • Mineral Research and Exploration Institute (MTA), 1980. Hot and mineral water inventory. Ankara.
  • Montanari, D., Minissale, A., Doveri, M., Gola, G., Trumpy, E., Santilano, A., Manzella, A. 1994. Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review. Earth Science Reviews 169, 180–201.
  • Mundhenk, N., Huttenloch, P., Sanjuan, B., Kohl, T., Steger, H., Zorn, R. 2013. Corrosion and scaling as interrelated phenomena in an operating geothermal power plant. Corrosion Science 70, 17–28.
  • Mutlu, H., Güleç, N. 1998. Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia (Turkey). Journal of Volcanology and Geothermal Research 85, 495–515.
  • Nancollas, G. 1982. Formation of Scales of Calcium Carbonate Polymorphs: The Influence of Magnesium Ion and Inhibitors.
  • Nassif, N., Livage, J. 2011. From diatoms to silica-based biohybrids. Chemical Society Reviews 40, 849– 859.
  • Neofotistou, E., Demadis, K. D. 2004. Silica scale inhibition by polyaminoamide STARBURST® dendrimers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 242, 213–216.
  • Öngen, A. S., Ergüler, Z. A. 2021. The effect of urban heat island on groundwater located in shallow aquifers of Kütahya city center and shallow geothermal energy potential of the region, Turkey. Bulletin of the Mineral Research and Exploration 165, 217–234.
  • Owen, L. B., Michels, D. E. 1984. Geochemical engineering reference manual.
  • Owusu, P. A., Asumadu-Sarkodie, S. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 3, 1.
  • Pambudi, N. A., Itoi, R., Yamashiro, R., Alam, B. Y. C. S., Tusara, L., Jalilinasrabady, S., Khasani, J. 2015. The behavior of silica in geothermal brine from Dieng geothermal power plant, Indonesia. Geothermics 54, 109–114.
  • Patzay, G., Karman, F. H., Pota, G. 2003. Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary. Geothermics 32, 627–638.
  • Petkowski, J. J., Bains, W., Seager, S. 2020. On the Potential of Silicon as a Building Block for Life. Life 10.
  • Petrucci, R. H., Herring, G. F., Madura, J. D., Bissonnette, C. 2011. General Chemistry: Principles and Modern Applications, 10th ed. Pearson Education.
  • Preari, M., Spinde, K., Lazic, J., Brunner, E., Demadis, K. D. 2014. Bioinspired Insights Into Silicic Acid Stabilization Mechanisms: The Dominant Role of Polyethylene Glycol-Induced Hydrogen Bonding. Journal of American Chemical Society 136.
  • Putranto, W. A., Umardhani, Y., Sulistyo, Yurianto, Bayuseno, A. P. 2018. Analysis of calcium carbonate polymorphs deposited in water piping system and the effect of tartaric acid additive. MATEC Web of Conferences.
  • Rafferty, K. 1999. Scaling in geothermal heat pump systems. Idaho Falls.
  • Ramos-Candelaria, M., Cabel, A. C., Buñing, B. C., Noriega, M. T. 2000. Calcite inhibition field trials at the Mindanao Geothermal Production Field (MGPF), Philippines. World Geothermal Congress.
  • Rangel, G., Pereira, V., Ponte, C., Thorhallsson, S. 2019. Reaming calcite deposits of well PV8 while discharging: A successful operation at Riberia Grande geothermal field, Sáo Miguel Island, Azores, European Geothermal Congress.
  • Raymond, J., Williams-Jones, A. E., Clark, J. R. 2005. Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of Volcanology and Geothermal Research 145, 81– 96.
  • Reyes, A. G., Trompetter, W. J., Britten, K., Searle, J. 2003. Mineral deposits in the Rotokawa geothermal pipelines, New Zealand. Journal of Volcanology and Geothermal Research 119, 215–239.
  • Rose, P., Xu, T., Kovac, K., Mella, M., Pruess, K. 2007. Chemical stimulation in near-wellbore geothermal formations: Silica dissolution in the presence of calcite at high temperature and high pH. ThirtySecond Workshop on Geothermal Reservoir Engineering.
  • Ryley, D. 1980. The mass discharge of a geofluid from a geothermal reservoir—well system with flashing flow in the bore. Geothermics 9, 221–235.
  • Satman, A., Uğur, Z., Onur, M. 1999. The effect of calcite deposition on geothermal well inflow performance. Geothermics 28, 425–444.
  • Schwerin, D. L., Hatcher, J. D. 2022. Hydrofluoric Acid Burns. StatPearls Publishing.
  • Sener, F., Baba, A., Uzelli, T., Akkuş, İ., Mertoğlu, O. 2022. Geothermal Energy Strategy of Turkey.
  • Siega, F. L., Herras, E. B., Buñing, B. C. 2005. Calcite scale inhibition: The case of Mahanagdong wells in Leyte geothermal production field, Philippines. World Geothermal Congress.
  • Simmons, S. F., Christenson, B. W. 1994. Origins of calcite in a boiling geothermal system. American Journal of Science 294, 361–400.
  • Sousa, M. F., Bertran, C. A. 2014. New methodology based on staticlight scattering measurements for evaluation of inhibitors for in bulk crystallization. Journal of Colloid Interface Science 420, 57–64.
  • Spinde, K., Pachis, K., Antonakaki, I., Paasch, S., Brunner, E., Demadis, K. D. 2011. Influence of polyamines and related macromolecules on silicic acid polycondensation: Relevance to “soluble silicon pools”? Chemistry of Materials 23, 4676–4687.
  • Tobler, D. J., Benning, L. G. 2013. In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions. Geochim Cosmochim Acta 114, 156–168.
  • Tonkul, S., Baba, A., Demir, M. M., Regenspurg, S. 2021. Characterization of Sb scaling and fluids in saline geothermal power plants: A case study for Germencik Region (Büyük Menderes Graben, Turkey). Geothermics 96.
  • Topçu, G., Çelik, A., Baba, A., Demir, M. M. 2017. Design of polymeric antiscalants based on functional vinyl monomers for (Fe, Mg) silicates. Energy and Fuels 31.
  • Topçu, G., Çelik, A., Kandemir, A., Baba, A., Şahin, H., Demir, M. M. 2019a. Increasing solubility of metal silicates by mixed polymeric antiscalants. Geothermics 77, 106–114.
  • Topçu, G., Koç, G. A., Baba, A., Demir, M. M. 2019b. The injection of CO2 to hypersaline geothermal brine: A case study for Tuzla region. Geothermics 80, 86–91.
  • Tubular Exchanger Manufacturers Association, 1952. Standard of Tubular Exchanger Manufacturers Association.
  • Ueckert, M., Wismeth, C., Baumann, T. 2020. Crystallization of calcium carbonate in a large-scale push–pull heat storage test in the Upper Jurassic carbonate aquifer. Geothermal Energy 8.
  • Ueda, A., Kato, H., Miyauchi, T., Kato, K. 2003. Investigation of pH control method to avoid silica scaling in the Sumikawa geothermal field. Journal of the Geothermal Research Society of Japan 25, 163–177.
  • Utami, P. 2000. Characteristics of the Kamojang geothermal reservoir (West Java) as revealed by its hydrothermal alteration mineralogy. World Geothermal Congress.
  • Wangen, M., Sagen, J., Bjørnstad, T., Johansen, H., Souche, A. J. R. 2016. Models for calcium carbonate precipitation in the near-well zone by degassing of CO2. The Open Petroleum Engineering Journal 9, 178–194.
  • Wilson, N., Webster-Brown, J., Brown, K. 2007. Controls on stibnite precipitation at two New Zealand geothermal power stations. Geothermics 36, 330– 347.
  • Wong, L., Suratwala, T., Feit, M. D., Miller, P. E., Steele, R. 2009. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica. Journal of Non-Crystalline Solids 355, 797–810.
  • Yokoyama, T., Ueda, A., Kato, K., Mogi, K., Matsuo, S. 2002. A study of the alumina–silica gel adsorbent for the removal of silicic acid from geothermal water: increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid. Journal of Colloid and Interface Science 252, 1–5.
  • Zarrouk, S. J., Purnanto, M. H. 2014. Geothermal steamwater separators: Design overview. Geothermics 53, 236–254.
  • Zarrouk, S. J., Moon, H. 2014. Efficiency of geothermal power plants: A worldwide review. Geothermics 51, 142–153.
  • Zhang, B. R., Chen, Y. N., Li, F. T. 2011. Inhibitory effects of poly (adipic acid/amine-terminated polyether D230/diethylenetriamine) on colloidal silica formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 385, 11–19.
There are 113 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tuğba Isık This is me 0000-0001-7328-9819

Alper Baba This is me 0000-0001-5307-3156

Dornadula Chandrasekharam This is me 0000-0003-1534-4319

Mustafa Muammer Demir This is me 0000-0003-1309-3990

Early Pub Date April 28, 2023
Publication Date August 25, 2023
Published in Issue Year 2023 Volume: 171 Issue: 171

Cite

APA Isık, T., Baba, A., Chandrasekharam, D., Demir, M. M. (2023). A brief overview on geothermal scaling. Bulletin of the Mineral Research and Exploration, 171(171), 185-203. https://doi.org/10.19111/bulletinofmre.1228900
AMA Isık T, Baba A, Chandrasekharam D, Demir MM. A brief overview on geothermal scaling. Bull.Min.Res.Exp. August 2023;171(171):185-203. doi:10.19111/bulletinofmre.1228900
Chicago Isık, Tuğba, Alper Baba, Dornadula Chandrasekharam, and Mustafa Muammer Demir. “A Brief Overview on Geothermal Scaling”. Bulletin of the Mineral Research and Exploration 171, no. 171 (August 2023): 185-203. https://doi.org/10.19111/bulletinofmre.1228900.
EndNote Isık T, Baba A, Chandrasekharam D, Demir MM (August 1, 2023) A brief overview on geothermal scaling. Bulletin of the Mineral Research and Exploration 171 171 185–203.
IEEE T. Isık, A. Baba, D. Chandrasekharam, and M. M. Demir, “A brief overview on geothermal scaling”, Bull.Min.Res.Exp., vol. 171, no. 171, pp. 185–203, 2023, doi: 10.19111/bulletinofmre.1228900.
ISNAD Isık, Tuğba et al. “A Brief Overview on Geothermal Scaling”. Bulletin of the Mineral Research and Exploration 171/171 (August 2023), 185-203. https://doi.org/10.19111/bulletinofmre.1228900.
JAMA Isık T, Baba A, Chandrasekharam D, Demir MM. A brief overview on geothermal scaling. Bull.Min.Res.Exp. 2023;171:185–203.
MLA Isık, Tuğba et al. “A Brief Overview on Geothermal Scaling”. Bulletin of the Mineral Research and Exploration, vol. 171, no. 171, 2023, pp. 185-03, doi:10.19111/bulletinofmre.1228900.
Vancouver Isık T, Baba A, Chandrasekharam D, Demir MM. A brief overview on geothermal scaling. Bull.Min.Res.Exp. 2023;171(171):185-203.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en