Hot spring waters are rich in terms of minerals. Since there are dramatic changes in thermodynamic parameters in geothermal power plants, such as a decrease in temperature and pressure, severe precipitation occurs throughout the system components in an uncontrolled manner. There are three main chemistries in deposits: carbonates (mainly calcium carbonates), silicates (metal silicates), and sulphides (antimony sulphide-stibnite). Energy harvesting is remarkably reduced out of the insulating nature of the deposit. Various actions need to be taken to mitigate this undesirable issue of scaling in geothermal systems. Geothermal systems are in fact quite complex, and the composition of brine and, accordingly, the chemistry of the deposit are not identical. Therefore, each system should be studied individually, and a tailor-made remedy should be developed. In this overview, the types of deposits in terms of chemistry and the actions (pH modification or antiscalant dosing) that should be taken to reduce scaling are mentioned, and potential chemistries of antiscalants are given.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Early Pub Date | April 28, 2023 |
Publication Date | August 25, 2023 |
Published in Issue | Year 2023 Volume: 171 Issue: 171 |
Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.
For further details;
https://creativecommons.org/licenses/?lang=en