Araştırma Makalesi
BibTex RIS Kaynak Göster

Groundwater potential mapping using the integration of AHP method, GIS and remote sensing: a case study of the Tabelbala region, Algeria

Yıl 2023, Cilt: 172 Sayı: 172, 41 - 60, 19.12.2023
https://doi.org/10.19111/bulletinofmre.1188507

Öz

Recently, groundwater resources are assessed and evaluated using Geographic Information System (GIS) and remote sensing technologies due to their effectiveness and wide spatial coverage. This work aims to identify groundwater potential areas in the Tabelbala region which lies in the Algerian desert in order to help for the solution of water resources shortages. GIS and remote sensing are employed in the preparation of the controlling factors such as lithology, lineaments, drainage network, slope, land use/land cover, topographic wetness index, and elevation. Statistical Analysis,
as well as interpretation of remote sensing data, allow the extraction of important features about the study area and its characteristics. The prepared layers are combined with multicriteria analysis
to identify the groundwater potential zones (GWPZs) based on their statistical weights. To validate the conducted work, 222 wells/boreholes are collected and prepared to assess the potential areas.
Results reveal that the very good potentiality class covers approximately 8.81% of the total area while 6.47% shows very poor potentiality. In addition, the application of the ROC curve shows an
AUC of 89% which reveals the effectiveness of the proposed approach. The final resulting map can be used for the identification of suitable sites for wells implantation.

Kaynakça

  • Adeyeye, O. A., Ikpokonte, E. A., Arabi, S. A. 2019. GIS- based groundwater potential mapping within
  • Dengi area, North Central Nigeria. The Egyptian Journal of Remote Sensing and Space Science 22, 175–181.
  • Berhanu, K. G., Hatiye, S. D. 2020. Identification of groundwater potential zones using proxy data: Case study of Megech watershed, Ethiopia. Journal of Hydrology: Regional Studies 28, 100676.
  • Bevan, A., Lake, M. 2016. Intensities, interactions, and uncertainties: some new approaches to archaeological distributions. International Computational Approaches to Archaeological Spaces 27–52.
  • Boobalan, C., Gurugnanam, B. 2016. Mapping of groundwater potential zones in Sarabanga Sub- basin, Cauvery River, South India using remote sensing and GIS techniques. Indian Journal of Applied Research 6, 364–369.
  • Dar, I. A., Sankar, K., Dar, M. A. 2011. Deciphering groundwater potential zones in hard rock terrain using geospatial technology. Environmental Monitoring and Assessment 173, 597–610.
  • Das, B., Pal, S. C. 2019. Combination of GIS and fuzzy- AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India. HydroResearch 2, 21–30.
  • DAV (Data Access Viewer-Nasa Power). https://power. larc.nasa.gov/data-access-viewer/. September 20,2021.
  • Dinesh Kumar, P., Gopinath, G., Seralathan, P. 2007. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing 28, 5583–5601.
  • El Abidine, R. Z., Abdelmansour, N. 2019. Landslide susceptibility mapping using information value and frequency ratio for the Arzew sector (North- Western of Algeria). Bulletin of the Mineral Research and Exploration 160, 197–211.
  • Ennih, N., Liégeois, J.-P. 2001. The Moroccan Anti-Atlas: the West African craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton. Precambrian Research 112, 289–302.
  • Fenta, A. A., Kifle, A., Gebreyohannes, T., Hailu, G. 2015. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeology Journal 23, 195–206.
  • Gupta, R. P. 2017. Remote sensing geology, Springer.
  • Hatefi, A. A. H., Ekhtesasi, M. R. 2016. Groundwater potentiality through analytic hierarchy process (AHP) using remote sensing and geographic information system (GIS). Geopersia 6(1).
  • Hobbs, W. H. 1904. Lineaments of the Atlantic border region. Bulletin of the Geological Society of America 15, 483–506.
  • Islam, A. T., Shen, S., Bodrud-Doza, M., Rahman, M. A., Das, S. 2017. Assessment of trace elements of groundwater and their spatial distribution in Rangpur district, Bangladesh. Arabian Journal of Geosciences 10, 95.
  • Jasrotia, A., Kumar, A., Singh, R. 2016. Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arabian Journal of Geosciences 9, 304.
  • Jha, M. K., Chowdary, V., Chowdhury, A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal 18, 1713–1728.
  • Kaur, L., Rishi, M. S., Singh, G., Thakur, S. N. 2020. Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecological Indicators 110, 105850.
  • Kemper, K. E. 2004. Groundwater from development to management. Hydrogeology Journal 12, 3-5.
  • Kerzabi, R., Mansour, H., Yousfi, S., Marín, A. I., Navarro, B. A., Bensefia, K. E. 2021. Contribution of Remote Sensing and GIS to mapping groundwater vulnerability in arid zone: case from Amour Mountains-Algerian Saharan Atlas. Journal of African Earth Sciences 104277.
  • Kousalya, P., Reddy, G. M., Supraja, S., Prasad, V. S. 2012. Analytical hierarchy process approach– an application of engineering education. Mathematica Aeterna 2, 861–878.
  • Kumar, A., Taxak, A., Mishra, S., Pandey, R. 2021. Long term trend analysis and suitability of water quality of River Ganga at Himalayan hills of Uttarakhand, India. Environmental Technology and Innovation 22, 101405.
  • Kurek, S., Preidl, M. 1987. Le Precambrien des chaines d’Ougarta (Sahara Algerien), sa place dans la structure de l’Afrique du Nord-Ouest. In Colloquium on African Geology 14, 61–64.
  • Magesh, J. P., Nochyil S. et Chandrasekar, Nainarpandian et Soundranayagam. 2012. Délimitation des zones potentielles d’eaux souterraines dans le district de Theni, Tamil Nadu, à l’aide de techniques de télédétection, SIG et MIF. Frontières Géoscientifiques 3, 189–196.
  • Mandal, U., Sahoo, S., Munusamy, S. B., Dhar, A., Panda, S. N., Kar, A., Mishra, P. K. 2016. Delineation of groundwater potential zones of coastal groundwater basin using multi-criteria decision making technique. Water Resources Management 30, 4293–4310.
  • Mekkaouı, A. 2015. Le magmatisme basique de l’axe Damrane-Kahal Tabelbala (Daoura, Monts de l’Ougarta, Sud-Ouest, Algérie): Géologie, Pétrologie, Géochimie et Contexte Géodynamique. PhD Thesis. Université d’Oran 2 Mohamed Ben Ahmed.
  • Mekkaoui, A., Remaci-Bénaouda, N., Graïne-Tazerout, K. 2017. Mafic dikes at Kahel Tabelbala (Daoura, Ougarta Range, south-western Algeria): New insights into the petrology, geochemistry and mantle source characteristics. Comptes Rendus Geoscience 349, 202–211.
  • Menchikoff, N. 1930. Recherches géologiques et morphologiques dans le Nord du Sahara occidental. PhD Thesis. University of Paris.
  • Mpofu, M., Madi, K., Gwavava, O. 2020. Remote sensing, geological, and geophysical investigation in the area of Ndlambe Municipality, Eastern Cape Province, South Africa: Implications for groundwater potential. Groundwater for Sustainable Development.
  • Nag, S., Kundu, A. 2018. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal. Applied Water Science 8, 1–13.
  • Nasir, M. J., Khan, S., Zahid, H., Khan, A. 2018. Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: a study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environmental Earth Sciences 77, 1–11.
  • Nemmour-Zekiri, D., Oulebsir, F. 2020. Application of remote sensing techniques in lithologic mapping of Djanet Region, Eastern Hoggar Shield, Algeria. Arabian Journal of Geosciences 13, 1–10.
  • Nithya, C. N., Srinivas, Y., Magesh, N., Kaliraj, S. 2019. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sensing Applications: Society and Environment 15, 100248.
  • USGS EarthExplorer. (United States Geological Survey). https://earthexplorer.usgs.gov/. October 13, 2021.
  • Prost, G. L. 1994. Remote sensing for geologists: a guide to image interpretation. CRC Press.
  • Prost, G. L. 2013. Remote sensing for geoscientists. CRC Press, New York.
  • Punniyamoorty, M., Mathiyalagan, P., Lakshmi, G. 2012. A combined application of structural equation modeling (SEM) and analytic hierarchy process (AHP) in supplier selection. Benchmarking: An International Journal 19(1), 70-92.
  • Rabah, Nimour, Briedj, Tamani, Aouabed. 2016. Carte minute géologique de Tabelbala (Algérie: ASGA).
  • Rashid, M., Lone, M. A., Ahmed, S. 2012. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environmental Monitoring and Assessment 184, 4829–4839.
  • Rencz, A. N., Ryerson, R. A. 1999. Manual of remote sensing, remote sensing for the earth sciences. John Wiley and Sons.
  • Saadi, O., Nouayti, N., Nouayti, A., Dimane, F., Elhairechi, K. 2021. Application of remote sensing data and geographic information system for identifying potential areas of groundwater storage in middle Moulouya Basin of Morocco. Groundwater for Sustainable Development 14, 100639.
  • Saaty, T. L. 1980. The analytic hierarchy process: planning. Priority setting. Resource Allocation, MacGraw- Hill, New York. International Book Company, 287.
  • Saaty, T. L. 1990. Decision making for leaders: the analytic hierarchy process for decisions in a complex world. RWS publications.
  • Saaty, T. L. 2003. Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research 145, 85–91.
  • Scanvic, J.-Y. 1997. Aerospatial remote sensing in geology. CRC Press.
  • Selvam, S., Magesh, N., Chidambaram, S., Rajamanickam, M., Sashikkumar, M. 2015. A GIS based identification of groundwater recharge potential zones using RS and IF technique: a case study in Ottapidaram taluk, Tuticorin district, Tamil Nadu. Environmental Earth Sciences 73, 3785–3799.
  • Shekhar, S., Pandey, A. C. 2015. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International 30, 402–421.
  • Tanvir Rahman, M.A., Rahman, S. H., Majumder, R. K. 2012. Groundwater quality for irrigation of deep aquifer in southwestern zone of Banglades. Songklanakarin Journal of Science and Technology 34.
  • Tarboton, D. G., Bras, R. L., Rodriguez-Iturbe, I. 1992. A physical basis for drainage density. Geomorphology 5, 59–76.
  • Thapa, R., Gupta, S., Guin, S., Kaur, H. 2017. Assessment of groundwater potential zones using multi- influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Applied Water Science 7, 4117–4131.
  • Vadrevu, K. P., Eaturu, A., Badarinath, K. 2006. Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using spot satellite datasets. Environmental Monitoring and Assessment 123, 75–96.
  • Yeh, H., Cheng, Y., Hung-I, L., Lee, C. 2016. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research. Elsevier Ltd. 26, 33–43.
Yıl 2023, Cilt: 172 Sayı: 172, 41 - 60, 19.12.2023
https://doi.org/10.19111/bulletinofmre.1188507

Öz

Kaynakça

  • Adeyeye, O. A., Ikpokonte, E. A., Arabi, S. A. 2019. GIS- based groundwater potential mapping within
  • Dengi area, North Central Nigeria. The Egyptian Journal of Remote Sensing and Space Science 22, 175–181.
  • Berhanu, K. G., Hatiye, S. D. 2020. Identification of groundwater potential zones using proxy data: Case study of Megech watershed, Ethiopia. Journal of Hydrology: Regional Studies 28, 100676.
  • Bevan, A., Lake, M. 2016. Intensities, interactions, and uncertainties: some new approaches to archaeological distributions. International Computational Approaches to Archaeological Spaces 27–52.
  • Boobalan, C., Gurugnanam, B. 2016. Mapping of groundwater potential zones in Sarabanga Sub- basin, Cauvery River, South India using remote sensing and GIS techniques. Indian Journal of Applied Research 6, 364–369.
  • Dar, I. A., Sankar, K., Dar, M. A. 2011. Deciphering groundwater potential zones in hard rock terrain using geospatial technology. Environmental Monitoring and Assessment 173, 597–610.
  • Das, B., Pal, S. C. 2019. Combination of GIS and fuzzy- AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India. HydroResearch 2, 21–30.
  • DAV (Data Access Viewer-Nasa Power). https://power. larc.nasa.gov/data-access-viewer/. September 20,2021.
  • Dinesh Kumar, P., Gopinath, G., Seralathan, P. 2007. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing 28, 5583–5601.
  • El Abidine, R. Z., Abdelmansour, N. 2019. Landslide susceptibility mapping using information value and frequency ratio for the Arzew sector (North- Western of Algeria). Bulletin of the Mineral Research and Exploration 160, 197–211.
  • Ennih, N., Liégeois, J.-P. 2001. The Moroccan Anti-Atlas: the West African craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton. Precambrian Research 112, 289–302.
  • Fenta, A. A., Kifle, A., Gebreyohannes, T., Hailu, G. 2015. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeology Journal 23, 195–206.
  • Gupta, R. P. 2017. Remote sensing geology, Springer.
  • Hatefi, A. A. H., Ekhtesasi, M. R. 2016. Groundwater potentiality through analytic hierarchy process (AHP) using remote sensing and geographic information system (GIS). Geopersia 6(1).
  • Hobbs, W. H. 1904. Lineaments of the Atlantic border region. Bulletin of the Geological Society of America 15, 483–506.
  • Islam, A. T., Shen, S., Bodrud-Doza, M., Rahman, M. A., Das, S. 2017. Assessment of trace elements of groundwater and their spatial distribution in Rangpur district, Bangladesh. Arabian Journal of Geosciences 10, 95.
  • Jasrotia, A., Kumar, A., Singh, R. 2016. Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arabian Journal of Geosciences 9, 304.
  • Jha, M. K., Chowdary, V., Chowdhury, A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal 18, 1713–1728.
  • Kaur, L., Rishi, M. S., Singh, G., Thakur, S. N. 2020. Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecological Indicators 110, 105850.
  • Kemper, K. E. 2004. Groundwater from development to management. Hydrogeology Journal 12, 3-5.
  • Kerzabi, R., Mansour, H., Yousfi, S., Marín, A. I., Navarro, B. A., Bensefia, K. E. 2021. Contribution of Remote Sensing and GIS to mapping groundwater vulnerability in arid zone: case from Amour Mountains-Algerian Saharan Atlas. Journal of African Earth Sciences 104277.
  • Kousalya, P., Reddy, G. M., Supraja, S., Prasad, V. S. 2012. Analytical hierarchy process approach– an application of engineering education. Mathematica Aeterna 2, 861–878.
  • Kumar, A., Taxak, A., Mishra, S., Pandey, R. 2021. Long term trend analysis and suitability of water quality of River Ganga at Himalayan hills of Uttarakhand, India. Environmental Technology and Innovation 22, 101405.
  • Kurek, S., Preidl, M. 1987. Le Precambrien des chaines d’Ougarta (Sahara Algerien), sa place dans la structure de l’Afrique du Nord-Ouest. In Colloquium on African Geology 14, 61–64.
  • Magesh, J. P., Nochyil S. et Chandrasekar, Nainarpandian et Soundranayagam. 2012. Délimitation des zones potentielles d’eaux souterraines dans le district de Theni, Tamil Nadu, à l’aide de techniques de télédétection, SIG et MIF. Frontières Géoscientifiques 3, 189–196.
  • Mandal, U., Sahoo, S., Munusamy, S. B., Dhar, A., Panda, S. N., Kar, A., Mishra, P. K. 2016. Delineation of groundwater potential zones of coastal groundwater basin using multi-criteria decision making technique. Water Resources Management 30, 4293–4310.
  • Mekkaouı, A. 2015. Le magmatisme basique de l’axe Damrane-Kahal Tabelbala (Daoura, Monts de l’Ougarta, Sud-Ouest, Algérie): Géologie, Pétrologie, Géochimie et Contexte Géodynamique. PhD Thesis. Université d’Oran 2 Mohamed Ben Ahmed.
  • Mekkaoui, A., Remaci-Bénaouda, N., Graïne-Tazerout, K. 2017. Mafic dikes at Kahel Tabelbala (Daoura, Ougarta Range, south-western Algeria): New insights into the petrology, geochemistry and mantle source characteristics. Comptes Rendus Geoscience 349, 202–211.
  • Menchikoff, N. 1930. Recherches géologiques et morphologiques dans le Nord du Sahara occidental. PhD Thesis. University of Paris.
  • Mpofu, M., Madi, K., Gwavava, O. 2020. Remote sensing, geological, and geophysical investigation in the area of Ndlambe Municipality, Eastern Cape Province, South Africa: Implications for groundwater potential. Groundwater for Sustainable Development.
  • Nag, S., Kundu, A. 2018. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal. Applied Water Science 8, 1–13.
  • Nasir, M. J., Khan, S., Zahid, H., Khan, A. 2018. Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: a study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environmental Earth Sciences 77, 1–11.
  • Nemmour-Zekiri, D., Oulebsir, F. 2020. Application of remote sensing techniques in lithologic mapping of Djanet Region, Eastern Hoggar Shield, Algeria. Arabian Journal of Geosciences 13, 1–10.
  • Nithya, C. N., Srinivas, Y., Magesh, N., Kaliraj, S. 2019. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sensing Applications: Society and Environment 15, 100248.
  • USGS EarthExplorer. (United States Geological Survey). https://earthexplorer.usgs.gov/. October 13, 2021.
  • Prost, G. L. 1994. Remote sensing for geologists: a guide to image interpretation. CRC Press.
  • Prost, G. L. 2013. Remote sensing for geoscientists. CRC Press, New York.
  • Punniyamoorty, M., Mathiyalagan, P., Lakshmi, G. 2012. A combined application of structural equation modeling (SEM) and analytic hierarchy process (AHP) in supplier selection. Benchmarking: An International Journal 19(1), 70-92.
  • Rabah, Nimour, Briedj, Tamani, Aouabed. 2016. Carte minute géologique de Tabelbala (Algérie: ASGA).
  • Rashid, M., Lone, M. A., Ahmed, S. 2012. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environmental Monitoring and Assessment 184, 4829–4839.
  • Rencz, A. N., Ryerson, R. A. 1999. Manual of remote sensing, remote sensing for the earth sciences. John Wiley and Sons.
  • Saadi, O., Nouayti, N., Nouayti, A., Dimane, F., Elhairechi, K. 2021. Application of remote sensing data and geographic information system for identifying potential areas of groundwater storage in middle Moulouya Basin of Morocco. Groundwater for Sustainable Development 14, 100639.
  • Saaty, T. L. 1980. The analytic hierarchy process: planning. Priority setting. Resource Allocation, MacGraw- Hill, New York. International Book Company, 287.
  • Saaty, T. L. 1990. Decision making for leaders: the analytic hierarchy process for decisions in a complex world. RWS publications.
  • Saaty, T. L. 2003. Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research 145, 85–91.
  • Scanvic, J.-Y. 1997. Aerospatial remote sensing in geology. CRC Press.
  • Selvam, S., Magesh, N., Chidambaram, S., Rajamanickam, M., Sashikkumar, M. 2015. A GIS based identification of groundwater recharge potential zones using RS and IF technique: a case study in Ottapidaram taluk, Tuticorin district, Tamil Nadu. Environmental Earth Sciences 73, 3785–3799.
  • Shekhar, S., Pandey, A. C. 2015. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International 30, 402–421.
  • Tanvir Rahman, M.A., Rahman, S. H., Majumder, R. K. 2012. Groundwater quality for irrigation of deep aquifer in southwestern zone of Banglades. Songklanakarin Journal of Science and Technology 34.
  • Tarboton, D. G., Bras, R. L., Rodriguez-Iturbe, I. 1992. A physical basis for drainage density. Geomorphology 5, 59–76.
  • Thapa, R., Gupta, S., Guin, S., Kaur, H. 2017. Assessment of groundwater potential zones using multi- influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Applied Water Science 7, 4117–4131.
  • Vadrevu, K. P., Eaturu, A., Badarinath, K. 2006. Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using spot satellite datasets. Environmental Monitoring and Assessment 123, 75–96.
  • Yeh, H., Cheng, Y., Hung-I, L., Lee, C. 2016. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research. Elsevier Ltd. 26, 33–43.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Genel Jeoloji
Bölüm Makaleler
Yazarlar

Ahmed Bennıa Bu kişi benim 0000-0002-4862-7967

Ibrahim Zeroual Bu kişi benim 0000-0003-4863-3192

Abdelkrim Talhı Bu kişi benim 0000-0003-4285-1340

Lahcen Wahib Kebır Bu kişi benim 0000-0003-4203-595X

Erken Görünüm Tarihi 28 Nisan 2023
Yayımlanma Tarihi 19 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 172 Sayı: 172

Kaynak Göster

APA Bennıa, A., Zeroual, I., Talhı, A., Kebır, L. W. (2023). Groundwater potential mapping using the integration of AHP method, GIS and remote sensing: a case study of the Tabelbala region, Algeria. Bulletin of the Mineral Research and Exploration, 172(172), 41-60. https://doi.org/10.19111/bulletinofmre.1188507
AMA Bennıa A, Zeroual I, Talhı A, Kebır LW. Groundwater potential mapping using the integration of AHP method, GIS and remote sensing: a case study of the Tabelbala region, Algeria. Bull.Min.Res.Exp. Aralık 2023;172(172):41-60. doi:10.19111/bulletinofmre.1188507
Chicago Bennıa, Ahmed, Ibrahim Zeroual, Abdelkrim Talhı, ve Lahcen Wahib Kebır. “Groundwater Potential Mapping Using the Integration of AHP Method, GIS and Remote Sensing: A Case Study of the Tabelbala Region, Algeria”. Bulletin of the Mineral Research and Exploration 172, sy. 172 (Aralık 2023): 41-60. https://doi.org/10.19111/bulletinofmre.1188507.
EndNote Bennıa A, Zeroual I, Talhı A, Kebır LW (01 Aralık 2023) Groundwater potential mapping using the integration of AHP method, GIS and remote sensing: a case study of the Tabelbala region, Algeria. Bulletin of the Mineral Research and Exploration 172 172 41–60.
IEEE A. Bennıa, I. Zeroual, A. Talhı, ve L. W. Kebır, “Groundwater potential mapping using the integration of AHP method, GIS and remote sensing: a case study of the Tabelbala region, Algeria”, Bull.Min.Res.Exp., c. 172, sy. 172, ss. 41–60, 2023, doi: 10.19111/bulletinofmre.1188507.
ISNAD Bennıa, Ahmed vd. “Groundwater Potential Mapping Using the Integration of AHP Method, GIS and Remote Sensing: A Case Study of the Tabelbala Region, Algeria”. Bulletin of the Mineral Research and Exploration 172/172 (Aralık 2023), 41-60. https://doi.org/10.19111/bulletinofmre.1188507.
JAMA Bennıa A, Zeroual I, Talhı A, Kebır LW. Groundwater potential mapping using the integration of AHP method, GIS and remote sensing: a case study of the Tabelbala region, Algeria. Bull.Min.Res.Exp. 2023;172:41–60.
MLA Bennıa, Ahmed vd. “Groundwater Potential Mapping Using the Integration of AHP Method, GIS and Remote Sensing: A Case Study of the Tabelbala Region, Algeria”. Bulletin of the Mineral Research and Exploration, c. 172, sy. 172, 2023, ss. 41-60, doi:10.19111/bulletinofmre.1188507.
Vancouver Bennıa A, Zeroual I, Talhı A, Kebır LW. Groundwater potential mapping using the integration of AHP method, GIS and remote sensing: a case study of the Tabelbala region, Algeria. Bull.Min.Res.Exp. 2023;172(172):41-60.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en