Yıl 2024,
Cilt: 174 Sayı: 174, 55 - 66, 13.08.2024
Hazel Deniz Toktay
Korimilli N Durga Prasad
Ahmad Alvandi
Kaynakça
- Alvandi, A., Toktay, H. D., Pham, L. T. 2022. Capability of improved logistics filter in determining lateral boundaries and edges of gravity and magnetic anomalies Tuzgölü Area, Türkiye, Journal of Mining Engineering 17(56), 57-72.
- Alvandi, A., Ardestani, V. E. 2023. Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics and Oceanography 64(3), 279-300.
- Alvandi, A., Toktay, H D., Ardestani, V. E. 2023. Edge detection of geological structures based on a logistic function: A case study for gravity data of the Western Carpathians. International Journal of Mining and Geo-Engineering 57(3), 267-274.
- Blakely, R. J., Simpson, R. W. 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7), 1494-1498.
- Castro, F. R., Oliveira, S. P., De Souza, J., Ferreira, F. J. F. 2018. GRAV-MAG SUITE: An open source MATLAB-based program for processing potential field data. Sociedade Brasileira de Geofísica 8(2), 1-6.
- Cooper, G. R. 2009. Balancing images of potential-field data. Geophysics 74(3), 17-20.
- Cooper, G. R. J., Cowan, D.R. 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences 32(10), 1585-1591.
- Cordell, L., Grauch, V. J. S. 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysicists Press, 181- 197.
- Erd, R. C., Greenberg, S.S. 1960. Minerals of Indiana. Indiana Geological Survey Bulletin 18, 73.
- Gray, H. H. 1989. Quaternary geologic map of Indiana: Indiana Geological Survey Miscellaneous Map No: 49, scale 1:500.000, Bloomington, Indiana, United States of America.
- Gray, H. H., Ault, C. H., Keller, S. J. 1987. Bedrock geologic map of Indiana, Indiana Geological Survey Miscellaneous Map No: 48, scale 1:500.000, Indiana, United States of America.
- Haase, S. H., Park, C. H., Nowack, R. L., Hill, J. R. 2010. Probabilistic seismic hazard estimates incorporating site effects-an example from Indiana, USA. Environmental and Engineering Geoscience 16 (4), 369-388.
- Henderson, J. R., Zietz, I. 1958. Interpretation of an aeromagnetic survey of Indiana: US Geological Survey Professional Paper 316-B, 17, scale 1:500,000, Indiana, United States of America
- Huizing, T. E., Russell, R. E. 1986. Indiana minerals: a locality index. Rocks and Minerals 61(3),136- 151.
- Ibraheem, I. M., Tezkan, B., Ghazala, H., Othman, A. A. 2023. A new edge enhancement filter for the interpretation of magnetic field data. Pure and Applied Geophysics 180, 2223-2240.
- Miller, H. G., Singh, V. 1994. Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics 32(2-3), 213-217.
- Nabighian M. N. 1984. Towards a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms-fundamental relations. Geophysics 49, 780-786.
- Pham, L. T., Oksum, E., Do, T. D., Huy, M. L. 2018.New method for edges detection of magnetic sources using logistic function. Geofizicheskiy Zhurnal 40(6), 127-135.
- Pham, L. T., Oksum, E., Do, T. D., Nguyen, D. V., Eldosouky, A.M. 2021. On the performance of phase-based filters for enhancing lateral boundaries of magnetic and gravity sources: a case study of the Seattle uplift. Arabian Journal of Geosciences 14(2), 1-11.
- Pham, L. T., Eldosouky, A. M., Oksum, E., Saada, S. A. 2022. A new high-resolution filter for source edge detection of potential field data. Geocarto International 37(11), 3051-3068.
- Philbin, P. W., Long, C. L., Moore, F. C. 1965. Aeromagnetic map of the Columbus-Dayton area, Ohio and Indiana: U.S. Geological Survey Geophysical Investigations Map GP-491, scale 1:250,000, United States of America.
- Phillips, J. D. 2002. Processing and interpretation of aeromagnetic data for the Santa Cruz Basin- Patagonia mountains area, South-central Arizona. US Geological Survey Open -File Report 02-98, Washington, DC, United States of America.
- Prasad, K. N. D., Pham, L. T., Singh, A. P. 2022a. A novel filter “ImpTAHG” for edge detection and a case study from Cambay Rift Basin, India. Pure and Applied Geophysics 179(6), 2351-2364.
- Prasad, K. N. D., Pham, L. T., Singh, A. P. 2022b. Structural mapping of potential field sources using BHG filter. Geocarto International 37, 1-28.
- Richards, F. J. 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10(2), 290- 301.
- Roest, W. R., Verhoef, J., Pilkington, M. 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1), 116-125.
- USGS Science for Changing World (United States Geological Survey). https://www.usgs.gov. 05 August 2024
- Wijns, C., Perez, C., Kowalczyk, P. 2005. Theta map: Eedge detection in magnetic data. Geophysics 70(4), L39-L43.
- Zuo, B., Hu, X., Liu, S., Geng, M. 2018. Delineation of overlapping magnetic field source boundaries with a 3-D multi-layer convolution model. Journal of Applied Geophysics, 150, 74-83.
Edge enhancement of potential field data using the enhanced gradient (EG) filter
Yıl 2024,
Cilt: 174 Sayı: 174, 55 - 66, 13.08.2024
Hazel Deniz Toktay
Korimilli N Durga Prasad
Ahmad Alvandi
Öz
Potential field data play a critical role in interpreting various geologic structural features through edge detection filters that aid in mapping subsurface structural features. For this purpose, various filters have been introduced in recent years to determine lateral boundaries. However, each of these filters has its limitations and advantages. This study presents a new edge enhancement filter named “Enhanced Gradient (EG)” based on the Richards function and applies it to potential field data for structural mapping. The EG is tested on two dimensional (2D) and three dimensional (3D) synthetic magnetic models with sources buried at different depths and variable properties. The results from the EG filter provide more accurate and higher resolution horizontal boundaries and can avoid creating the false edges in the output results. In addition, the proposed filter was examined using aeromagnetic data from the Indiana region in the USA. The primary and secondary faults and geological formations are recognizable in the EG image. The results of the EG map will allow us to improve the qualitative interpretation of potential field anomalies in studying the structural and tectonic geology of the Indiana region in the USA.
Teşekkür
The authors would like to thank the US Geological Survey (https://www.usgs.gov) for permission to use the geological information and the aeromagnetic data and Dr. Gordon Robert John Cooper for providing the Hilbert transform calculation scripts.
Kaynakça
- Alvandi, A., Toktay, H. D., Pham, L. T. 2022. Capability of improved logistics filter in determining lateral boundaries and edges of gravity and magnetic anomalies Tuzgölü Area, Türkiye, Journal of Mining Engineering 17(56), 57-72.
- Alvandi, A., Ardestani, V. E. 2023. Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics and Oceanography 64(3), 279-300.
- Alvandi, A., Toktay, H D., Ardestani, V. E. 2023. Edge detection of geological structures based on a logistic function: A case study for gravity data of the Western Carpathians. International Journal of Mining and Geo-Engineering 57(3), 267-274.
- Blakely, R. J., Simpson, R. W. 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7), 1494-1498.
- Castro, F. R., Oliveira, S. P., De Souza, J., Ferreira, F. J. F. 2018. GRAV-MAG SUITE: An open source MATLAB-based program for processing potential field data. Sociedade Brasileira de Geofísica 8(2), 1-6.
- Cooper, G. R. 2009. Balancing images of potential-field data. Geophysics 74(3), 17-20.
- Cooper, G. R. J., Cowan, D.R. 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences 32(10), 1585-1591.
- Cordell, L., Grauch, V. J. S. 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysicists Press, 181- 197.
- Erd, R. C., Greenberg, S.S. 1960. Minerals of Indiana. Indiana Geological Survey Bulletin 18, 73.
- Gray, H. H. 1989. Quaternary geologic map of Indiana: Indiana Geological Survey Miscellaneous Map No: 49, scale 1:500.000, Bloomington, Indiana, United States of America.
- Gray, H. H., Ault, C. H., Keller, S. J. 1987. Bedrock geologic map of Indiana, Indiana Geological Survey Miscellaneous Map No: 48, scale 1:500.000, Indiana, United States of America.
- Haase, S. H., Park, C. H., Nowack, R. L., Hill, J. R. 2010. Probabilistic seismic hazard estimates incorporating site effects-an example from Indiana, USA. Environmental and Engineering Geoscience 16 (4), 369-388.
- Henderson, J. R., Zietz, I. 1958. Interpretation of an aeromagnetic survey of Indiana: US Geological Survey Professional Paper 316-B, 17, scale 1:500,000, Indiana, United States of America
- Huizing, T. E., Russell, R. E. 1986. Indiana minerals: a locality index. Rocks and Minerals 61(3),136- 151.
- Ibraheem, I. M., Tezkan, B., Ghazala, H., Othman, A. A. 2023. A new edge enhancement filter for the interpretation of magnetic field data. Pure and Applied Geophysics 180, 2223-2240.
- Miller, H. G., Singh, V. 1994. Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics 32(2-3), 213-217.
- Nabighian M. N. 1984. Towards a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms-fundamental relations. Geophysics 49, 780-786.
- Pham, L. T., Oksum, E., Do, T. D., Huy, M. L. 2018.New method for edges detection of magnetic sources using logistic function. Geofizicheskiy Zhurnal 40(6), 127-135.
- Pham, L. T., Oksum, E., Do, T. D., Nguyen, D. V., Eldosouky, A.M. 2021. On the performance of phase-based filters for enhancing lateral boundaries of magnetic and gravity sources: a case study of the Seattle uplift. Arabian Journal of Geosciences 14(2), 1-11.
- Pham, L. T., Eldosouky, A. M., Oksum, E., Saada, S. A. 2022. A new high-resolution filter for source edge detection of potential field data. Geocarto International 37(11), 3051-3068.
- Philbin, P. W., Long, C. L., Moore, F. C. 1965. Aeromagnetic map of the Columbus-Dayton area, Ohio and Indiana: U.S. Geological Survey Geophysical Investigations Map GP-491, scale 1:250,000, United States of America.
- Phillips, J. D. 2002. Processing and interpretation of aeromagnetic data for the Santa Cruz Basin- Patagonia mountains area, South-central Arizona. US Geological Survey Open -File Report 02-98, Washington, DC, United States of America.
- Prasad, K. N. D., Pham, L. T., Singh, A. P. 2022a. A novel filter “ImpTAHG” for edge detection and a case study from Cambay Rift Basin, India. Pure and Applied Geophysics 179(6), 2351-2364.
- Prasad, K. N. D., Pham, L. T., Singh, A. P. 2022b. Structural mapping of potential field sources using BHG filter. Geocarto International 37, 1-28.
- Richards, F. J. 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10(2), 290- 301.
- Roest, W. R., Verhoef, J., Pilkington, M. 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1), 116-125.
- USGS Science for Changing World (United States Geological Survey). https://www.usgs.gov. 05 August 2024
- Wijns, C., Perez, C., Kowalczyk, P. 2005. Theta map: Eedge detection in magnetic data. Geophysics 70(4), L39-L43.
- Zuo, B., Hu, X., Liu, S., Geng, M. 2018. Delineation of overlapping magnetic field source boundaries with a 3-D multi-layer convolution model. Journal of Applied Geophysics, 150, 74-83.