Ayçiçeğinde külleme (Golovinomyces cichoracearum (DC.) V.P. Heluta), önemli ölçüde verim kaybına
neden olan, ayçiçeği ürünleri için önemli bir tehdittir. Geleneksel teşhis yöntemleri, insan gözlemine dayalı
olarak, erken hastalık tespiti ve hızlı kontrol sağlama konusunda yetersiz kalmaktadır. Bu çalışma, ayçiçeğinde küllemenin erken tespiti için makine öğrenimini kullanarak bu soruna yeni bir yaklaşım sunmaktadır. Orijinal alan görüntülerinden elde edilen fotoğraflara ait toprak, külleme, sap ve yaprak matrisleri ile Decision Trees (Karar Ağaçları) modeli eğitilerek hastalık şiddet seviyeleri tespit edilmiştir. Test görüntülerinde sırasıyla A ve C olarak etiketlenmiş hastalık şiddeti seviyeleri %18.14 ve %5.56 olarak belirlenmiştir. Modelin %85 oranında gösterdiği doğruluk, modelin yüksek düzeyde yetkinliğe ve özellikle Decision Trees modelinin tarım alanında hastalık kontrolünü ve hastalıkların önlenmesini devrimleştirmek için umut verici perspektiflere sahip olduğunu göstermektedir.
Sunflower powdery mildew (Golovinomyces cichoracearum (DC.) V.P. Heluta) is a substantial threat
to sunflower crops, causing significant yield loss. Traditional identification methods, based on human
observation, fall short in providing early disease detection and quick control. This study presents a novel
approach to this problem, utilizing machine learning for the early detection of powdery mildew in sunflowers. The disease severity levels were determined by training a Decision Trees model using matrix of soil, powdery mildew, stems, and leaf images obtained from original field images. It was detected disease severity levels of 18.14% and 5.56% in test images labeled as A and C, respectively. The model's demonstrated accuracy of 85% suggests high proficiency, indicating that machine learning, specifically the DTs model, holds promising prospects for revolutionizing disease control and diseases prevention in agriculture.
Primary Language | English |
---|---|
Subjects | Biosystem |
Journal Section | Research Articles |
Authors | |
Early Pub Date | December 8, 2023 |
Publication Date | December 8, 2023 |
Submission Date | August 9, 2023 |
Published in Issue | Year 2023 |
TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.
Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.
Makale başvurusunda;
(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)
(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),
(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)
(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,
(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.
Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür.
Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.