Research Article
BibTex RIS Cite

Ayçiçeğinde Küllemenin Makine Öğrenimine Dayalı Tespiti ve Şiddetinin Değerlendirilmesi: Hassas Tarım Yaklaşımı

Year 2023, , 387 - 400, 08.12.2023
https://doi.org/10.20479/bursauludagziraat.1340129

Abstract

Ayçiçeğinde külleme (Golovinomyces cichoracearum (DC.) V.P. Heluta), önemli ölçüde verim kaybına
neden olan, ayçiçeği ürünleri için önemli bir tehdittir. Geleneksel teşhis yöntemleri, insan gözlemine dayalı
olarak, erken hastalık tespiti ve hızlı kontrol sağlama konusunda yetersiz kalmaktadır. Bu çalışma, ayçiçeğinde küllemenin erken tespiti için makine öğrenimini kullanarak bu soruna yeni bir yaklaşım sunmaktadır. Orijinal alan görüntülerinden elde edilen fotoğraflara ait toprak, külleme, sap ve yaprak matrisleri ile Decision Trees (Karar Ağaçları) modeli eğitilerek hastalık şiddet seviyeleri tespit edilmiştir. Test görüntülerinde sırasıyla A ve C olarak etiketlenmiş hastalık şiddeti seviyeleri %18.14 ve %5.56 olarak belirlenmiştir. Modelin %85 oranında gösterdiği doğruluk, modelin yüksek düzeyde yetkinliğe ve özellikle Decision Trees modelinin tarım alanında hastalık kontrolünü ve hastalıkların önlenmesini devrimleştirmek için umut verici perspektiflere sahip olduğunu göstermektedir.

References

  • Adi, K., Pujiyanto, S., Dwi Nurhayati, O. and Pamungkas, A. 2017. Beef quality identification using thresholding method and decision tree classification based on android smartphone. Journal of Food Quality, 9: 1-10.
  • Bock, C. H., Barbedo, J. G., Del Ponte, E. M., Bohnenkamp, D. and Mahlein, A. K. 2020. From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy. Phytopathology Research, 2(1): 1-30.
  • Bock, C. H., Poole, G. H., Parker, P. E. and Gottwald, T. R. 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical reviews in plant sciences, 29(2): 59-107.
  • Cai, J., Xiao, D., Lv, L. and Ye, Y. 2019. An early warning model for vegetable pests based on multidimensional data. Computers and Electronics in Agriculture, 156: 217-226.
  • Cook, R. T. A. and Braun, U. 2009. Conidial germination patterns in powdery mildews. Mycological Research 113(5): 616-636.
  • Dawod, R. G. and Dobre, C. 2021. Classification of Sunflower Foliar Diseases Using Convolutional Neural Network. 23rd International Conference on Control Systems and Computer Science (CSCS). Bucharest, Romania. pp. 476-481
  • Dokken, K. M. and Davis, L. C. 2007. Infrared imaging of sunflower and maize root anatomy. Journal of agricultural and food chemistry, 55(26): 10517-10530.
  • Erdoğan, H., Bütüner, A. K. and Şahin, Y. S. 2023. Detection of Cucurbit Powdery Mildew, Sphaerotheca fuliginea (Schlech.) Polacci by Thermal Imaging in Field Conditions. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 23(1): 189-192.
  • Esgario, J. G., Krohling, R. A. and Ventura, J. A. 2020. Deep learning for classification and severity estimation of coffee leaf biotic stress. Computers and Electronics in Agriculture, 169: 105162.
  • Gallardo-Romero, D. J., Apolo-Apolo, O. E., Martínez-Guanter, J. and Pérez-Ruiz, M. 2023. Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation. Remote Sensing, 15(12): 3131-3148.
  • Goncalves, J. P., Pinto, F. A., Queiroz, D. M., Villar, F. M., Barbedo, J. G. and Del Ponte, E. M. 2021. Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests. Biosystems Engineering, 210: 129-142.
  • Jasim, S. S. and Al-Taei, A. A. M. 2018. A Comparison Between SVM and K-NN for classification of Plant Diseases. Diyala Journal for Pure Science, 14(2): 94-105.
  • Ji, M., Zhang, K., Wu, Q. and Deng, Z. 2020. Multi-label learning for crop leaf diseases recognition and severity estimation based on convolutional neural networks. Soft Computing, 24: 15327-15340.
  • Kaur, S., Pandey, S. and Goel, S. 2019. Plants disease identification and classification through leaf images: A survey. Archives of Computational Methods in Engineering, 26: 507-530.
  • Khan, C. M. T., Ab Aziz, N. A., Raja, J. E., Nawawi, S. W. B. and Rani, P. 2022. Evaluation of Machine Learning Algorithms for Emotions Recognition using Electrocardiogram. Emerging Science Journal, 7(1), 147-161.
  • Lebeda, A. and Mieslerová, B. 2011. Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathology 60(3): 400-415.
  • Lee, H. C., Yoon, S. B., Yang, S. M., Kim, W. H., Ryu, H. G., Jung, C. W., Suh, K. S. and Lee, K. H. 2018. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs. logistic regression model. Journal of clinical medicine, 7(11), 428.
  • Lee, S. J., Chung, D., Asano, A., Sasaki, D., Maeno, M., Ishida, Y., Kobayashi, T., Kuwajima, Y., Da Silva, J. D. and Nagai, S. 2022. Diagnosis of tooth prognosis using artificial intelligence. Diagnostics, 12(6), 1422.
  • Li, W., Wang, D., Li, M., Gao, Y., Wu, J. and Yang, X. 2021. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture, 183: 106048.
  • Lin, K., Gong, L., Huang, Y., Liu, C. and Pan, J. 2019. Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Frontiers in plant science, 10: 155.
  • Lindström, L. I. and Hernández, L. F. 2015. Developmental morphology and anatomy of the reproductive structures in sunflower (Helianthus annuus): a unified temporal scale. Botany, 93(5): 307-316.
  • Liu, Y., Zhang, Y., Jiang, D., Zhang, Z. and Chang, Q. 2023. Quantitative Assessment of Apple Mosaic Disease Severity Based on Hyperspectral Images and Chlorophyll Content. Remote Sensing, 15(8): 2202-2020.
  • Mahmood, R. A. R., Abdi, A. and Hussin, M. 2021. Performance evaluation of intrusion detection system using selected features and machine learning classifiers. Baghdad Science Journal, 18(2 (Suppl.)), 0884-0884.
  • Malik, A., Vaidya, G., Jagota, V., Eswaran, S., Sirohi, A., Batra, I., Rakhra, M. and Asenso, E. 2022. Design and evaluation of a hybrid technique for detecting sunflower leaf disease using deep learning approach. Journal of Food Quality 2022: 12.
  • Mulpuri, S., Soni, P. K. and Gonela, S. K. 2016. Morphological and molecular characterization of powdery mildew on sunflower (Helianthus annuus L.), alternate hosts and weeds commonly found in and around sunflower fields in India. Phytoparasitica, 44(3): 353-367.
  • Nagasubramanian, K., Jones, S., Singh, A. K., Sarkar, S., Singh, A. and Ganapathysubramanian, B. 2019. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant methods, 15: 1-10.
  • Owomugisha, G. and Mwebaze, E. 2016. Machine learning for plant disease incidence and severity measurements from leaf images. 15th IEEE international conference on machine learning and applications (ICMLA). Anaheim, CA, USA. pp. 158-163.
  • Park, M. J., Kim, B. S., Choi, I. Y., Cho, S. E. and Shin, H. D. 2015. First report of powdery mildew caused by Golovinomyces ambrosiae on sunflower in Korea. Plant Disease, 99(4): 557-557.
  • Pethybridge, S. J. and Nelson, S. C. 2015. Leaf Doctor: A new portable application for quantifying plant disease severity. Plant disease, 99(10): 1310-1316.
  • Prabhakar, M., Purushothaman, R. and Awasthi, D. P. 2020. Deep learning based assessment of disease severity for early blight in tomato crop. Multimedia Tools and Applications, 79: 28773-28784.
  • Reddy, K. P., Rao, S. C., Kirti, P. B. and Sujatha, M. 2013. Development of a scoring scale for powdery mildew (Golovinomyces cichoracearum (DC.) VP Heluta) disease and identification of resistance sources in cultivated and wild sunflowers. Euphytica, 190: 385-399.
  • Şahin, Y. S., Erdinç, A., Bütüner, A. K. and Erdoğan, H. 2023. Detection of Tuta absoluta larvae and their damages in tomatoes with deep learning-based algorithm. International Journal of Next-Generation Computing, 14(3): 555-565.
  • Singh, A., Ganapathysubramanian, B., Singh, A. K. and Sarkar, S. 2016. Machine learning for high-throughput stress phenotyping in plants. Trends in plant science, 21(2): 110-124.
  • Troisi, M., Bertetti, D., Garibaldi, A. and Gullino, M. L. 2010. First report of powdery mildew caused by Golovinomyces cichoracearum on Gerbera (Gerbera jamesonii) in Italy. Plant disease, 94(1): 130-130.
  • Wang, G., Sun, Y. and Wang, J. 2017. Automatic image-based plant disease severity estimation using deep learning. Computational intelligence and neuroscience, 2017: 1-8.
  • Wu, Q., Zeng, J. and Wu, K. 2022. Research and application of crop pest monitoring and early warning technology in China. Frontiers of Agricultural Science and Engineering, 9(1): 19-36.

Machine Learning-Based Detection and Severity Assessment of Sunflower Powdery Mildew: A Precision Agriculture Approach

Year 2023, , 387 - 400, 08.12.2023
https://doi.org/10.20479/bursauludagziraat.1340129

Abstract

Sunflower powdery mildew (Golovinomyces cichoracearum (DC.) V.P. Heluta) is a substantial threat
to sunflower crops, causing significant yield loss. Traditional identification methods, based on human
observation, fall short in providing early disease detection and quick control. This study presents a novel
approach to this problem, utilizing machine learning for the early detection of powdery mildew in sunflowers. The disease severity levels were determined by training a Decision Trees model using matrix of soil, powdery mildew, stems, and leaf images obtained from original field images. It was detected disease severity levels of 18.14% and 5.56% in test images labeled as A and C, respectively. The model's demonstrated accuracy of 85% suggests high proficiency, indicating that machine learning, specifically the DTs model, holds promising prospects for revolutionizing disease control and diseases prevention in agriculture.

References

  • Adi, K., Pujiyanto, S., Dwi Nurhayati, O. and Pamungkas, A. 2017. Beef quality identification using thresholding method and decision tree classification based on android smartphone. Journal of Food Quality, 9: 1-10.
  • Bock, C. H., Barbedo, J. G., Del Ponte, E. M., Bohnenkamp, D. and Mahlein, A. K. 2020. From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy. Phytopathology Research, 2(1): 1-30.
  • Bock, C. H., Poole, G. H., Parker, P. E. and Gottwald, T. R. 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical reviews in plant sciences, 29(2): 59-107.
  • Cai, J., Xiao, D., Lv, L. and Ye, Y. 2019. An early warning model for vegetable pests based on multidimensional data. Computers and Electronics in Agriculture, 156: 217-226.
  • Cook, R. T. A. and Braun, U. 2009. Conidial germination patterns in powdery mildews. Mycological Research 113(5): 616-636.
  • Dawod, R. G. and Dobre, C. 2021. Classification of Sunflower Foliar Diseases Using Convolutional Neural Network. 23rd International Conference on Control Systems and Computer Science (CSCS). Bucharest, Romania. pp. 476-481
  • Dokken, K. M. and Davis, L. C. 2007. Infrared imaging of sunflower and maize root anatomy. Journal of agricultural and food chemistry, 55(26): 10517-10530.
  • Erdoğan, H., Bütüner, A. K. and Şahin, Y. S. 2023. Detection of Cucurbit Powdery Mildew, Sphaerotheca fuliginea (Schlech.) Polacci by Thermal Imaging in Field Conditions. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 23(1): 189-192.
  • Esgario, J. G., Krohling, R. A. and Ventura, J. A. 2020. Deep learning for classification and severity estimation of coffee leaf biotic stress. Computers and Electronics in Agriculture, 169: 105162.
  • Gallardo-Romero, D. J., Apolo-Apolo, O. E., Martínez-Guanter, J. and Pérez-Ruiz, M. 2023. Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation. Remote Sensing, 15(12): 3131-3148.
  • Goncalves, J. P., Pinto, F. A., Queiroz, D. M., Villar, F. M., Barbedo, J. G. and Del Ponte, E. M. 2021. Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests. Biosystems Engineering, 210: 129-142.
  • Jasim, S. S. and Al-Taei, A. A. M. 2018. A Comparison Between SVM and K-NN for classification of Plant Diseases. Diyala Journal for Pure Science, 14(2): 94-105.
  • Ji, M., Zhang, K., Wu, Q. and Deng, Z. 2020. Multi-label learning for crop leaf diseases recognition and severity estimation based on convolutional neural networks. Soft Computing, 24: 15327-15340.
  • Kaur, S., Pandey, S. and Goel, S. 2019. Plants disease identification and classification through leaf images: A survey. Archives of Computational Methods in Engineering, 26: 507-530.
  • Khan, C. M. T., Ab Aziz, N. A., Raja, J. E., Nawawi, S. W. B. and Rani, P. 2022. Evaluation of Machine Learning Algorithms for Emotions Recognition using Electrocardiogram. Emerging Science Journal, 7(1), 147-161.
  • Lebeda, A. and Mieslerová, B. 2011. Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathology 60(3): 400-415.
  • Lee, H. C., Yoon, S. B., Yang, S. M., Kim, W. H., Ryu, H. G., Jung, C. W., Suh, K. S. and Lee, K. H. 2018. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs. logistic regression model. Journal of clinical medicine, 7(11), 428.
  • Lee, S. J., Chung, D., Asano, A., Sasaki, D., Maeno, M., Ishida, Y., Kobayashi, T., Kuwajima, Y., Da Silva, J. D. and Nagai, S. 2022. Diagnosis of tooth prognosis using artificial intelligence. Diagnostics, 12(6), 1422.
  • Li, W., Wang, D., Li, M., Gao, Y., Wu, J. and Yang, X. 2021. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture, 183: 106048.
  • Lin, K., Gong, L., Huang, Y., Liu, C. and Pan, J. 2019. Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Frontiers in plant science, 10: 155.
  • Lindström, L. I. and Hernández, L. F. 2015. Developmental morphology and anatomy of the reproductive structures in sunflower (Helianthus annuus): a unified temporal scale. Botany, 93(5): 307-316.
  • Liu, Y., Zhang, Y., Jiang, D., Zhang, Z. and Chang, Q. 2023. Quantitative Assessment of Apple Mosaic Disease Severity Based on Hyperspectral Images and Chlorophyll Content. Remote Sensing, 15(8): 2202-2020.
  • Mahmood, R. A. R., Abdi, A. and Hussin, M. 2021. Performance evaluation of intrusion detection system using selected features and machine learning classifiers. Baghdad Science Journal, 18(2 (Suppl.)), 0884-0884.
  • Malik, A., Vaidya, G., Jagota, V., Eswaran, S., Sirohi, A., Batra, I., Rakhra, M. and Asenso, E. 2022. Design and evaluation of a hybrid technique for detecting sunflower leaf disease using deep learning approach. Journal of Food Quality 2022: 12.
  • Mulpuri, S., Soni, P. K. and Gonela, S. K. 2016. Morphological and molecular characterization of powdery mildew on sunflower (Helianthus annuus L.), alternate hosts and weeds commonly found in and around sunflower fields in India. Phytoparasitica, 44(3): 353-367.
  • Nagasubramanian, K., Jones, S., Singh, A. K., Sarkar, S., Singh, A. and Ganapathysubramanian, B. 2019. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant methods, 15: 1-10.
  • Owomugisha, G. and Mwebaze, E. 2016. Machine learning for plant disease incidence and severity measurements from leaf images. 15th IEEE international conference on machine learning and applications (ICMLA). Anaheim, CA, USA. pp. 158-163.
  • Park, M. J., Kim, B. S., Choi, I. Y., Cho, S. E. and Shin, H. D. 2015. First report of powdery mildew caused by Golovinomyces ambrosiae on sunflower in Korea. Plant Disease, 99(4): 557-557.
  • Pethybridge, S. J. and Nelson, S. C. 2015. Leaf Doctor: A new portable application for quantifying plant disease severity. Plant disease, 99(10): 1310-1316.
  • Prabhakar, M., Purushothaman, R. and Awasthi, D. P. 2020. Deep learning based assessment of disease severity for early blight in tomato crop. Multimedia Tools and Applications, 79: 28773-28784.
  • Reddy, K. P., Rao, S. C., Kirti, P. B. and Sujatha, M. 2013. Development of a scoring scale for powdery mildew (Golovinomyces cichoracearum (DC.) VP Heluta) disease and identification of resistance sources in cultivated and wild sunflowers. Euphytica, 190: 385-399.
  • Şahin, Y. S., Erdinç, A., Bütüner, A. K. and Erdoğan, H. 2023. Detection of Tuta absoluta larvae and their damages in tomatoes with deep learning-based algorithm. International Journal of Next-Generation Computing, 14(3): 555-565.
  • Singh, A., Ganapathysubramanian, B., Singh, A. K. and Sarkar, S. 2016. Machine learning for high-throughput stress phenotyping in plants. Trends in plant science, 21(2): 110-124.
  • Troisi, M., Bertetti, D., Garibaldi, A. and Gullino, M. L. 2010. First report of powdery mildew caused by Golovinomyces cichoracearum on Gerbera (Gerbera jamesonii) in Italy. Plant disease, 94(1): 130-130.
  • Wang, G., Sun, Y. and Wang, J. 2017. Automatic image-based plant disease severity estimation using deep learning. Computational intelligence and neuroscience, 2017: 1-8.
  • Wu, Q., Zeng, J. and Wu, K. 2022. Research and application of crop pest monitoring and early warning technology in China. Frontiers of Agricultural Science and Engineering, 9(1): 19-36.
There are 36 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Research Articles
Authors

Alperen Kaan Bütüner 0000-0002-2121-3529

Yavuz Selim Şahin 0000-0001-6848-1849

Atilla Erdinç 0000-0002-0907-9443

Hilal Erdoğan 0000-0002-0387-2600

Early Pub Date December 8, 2023
Publication Date December 8, 2023
Submission Date August 9, 2023
Published in Issue Year 2023

Cite

APA Bütüner, A. K., Şahin, Y. S., Erdinç, A., Erdoğan, H. (2023). Machine Learning-Based Detection and Severity Assessment of Sunflower Powdery Mildew: A Precision Agriculture Approach. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 37(2), 387-400. https://doi.org/10.20479/bursauludagziraat.1340129

TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.

Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.



Makale başvurusunda;

(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)

(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),

(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)

(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,

(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.

Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür. 


25056 

Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.