Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Nineteen Potato Cultivars for Salt Tolerance and Determination of Reliable Parameters in Tolerance

Yıl 2020, Cilt: 34 Sayı: 2, 365 - 383, 01.12.2020

Öz

This investigation was aimed to explore the varietal differences in salinity tolerance of potato (Solanum tuberosum L.) plants by linking the overall salinity tolerance with changes in different morphological and physiological characteristics. Nineteen currently used potato cultivars were grown under controlled conditions in greenhouse at 25-18 (±2) °C (day/night), 70% relative humidity under non-saline and 5dS m-1 NaCl conditions for 90 days. For this purpose, tubers were planted in 14L pots, containing soil: peat: vermiculite (3:1:1). Salt treatment was started 1 week after all the seedlings where emerged. Salt stress tolerance of potato plants were determined with visual damage scale, cell membrane injury analysis and malondialdehyde (MDA) content, the indicator of lipid peroxidation. Leaf relative water content (RWC), loss of turgidity (LT) and total soluble protein (TSP) content were also examined. In addition, the protein profiles of leaf tissues of plants were evaluated by SDS-PAGE. In conclusion; among 19 potato cultivars evaluated cvs. Bettina, Challenger, Granola, Lady Claire, Musica and Orchestra were the most susceptible, cvs. Desiree and Russet Burbank were the most tolerant to salt stress. The data indicated that the low cell membrane injury and MDA content made cvs. Desiree and Russet Burbank relatively salt-tolerant cultivars. Besides, it is concluded that, visual damage scale and SDS-PAGE protein profiles also could be used as biomarkers in salt stress tolerance of potato cultivars.

Destekleyen Kurum

Eskisehir Osmangazi University Research Foundation

Proje Numarası

201423A216

Kaynakça

  • Abdoli Nejad, R. and Shekafendeh, A. 2014. Salt stress-induced changes in leaf antioxidant activity, proline and protein content in Shah Anjir and Anjir Shiraz fig seedlings. International Journal of Horticultural Science and. Technology, 1 (2): 121–129.
  • Aghaei, K., Ehsanpour, A.A. and Komatsu, S. 2008. Proteome analysis of potato under salt stress. Journal of Proteome Research, 7: 4858–4868.
  • Aghaei, K., Ehsanpour, A.A. and Komatsu, S. 2009. Potato responds to salt stress by increased activity of antioxidant enzymes. Journal of Integrative Plant Biology, 51: 1095–103.
  • Aksoy, E., Demirel, U., Öztürk, Z.N., Çalışkan, S. and Çalışkan, M.E. 2015. Recent advances in potato genomics, transcriptomics, and transgenics under drought and heat stresses: A review. Turkish Journal of Botany, 39 (6): 920-940.
  • Al-Hussaini, Z.A., Yousif, S.H.A., and Al-Ajeely, S.A. 2015. Effect of different medium on callus induction and regeneration in potato cultivars. International Journal of Current Microbiology and Applied Sciences, 4(5): 856-865.
  • Arefian, M., Vessal, S. and Bagheri, A. 2014. Biochemical changes and SDS-PAGE analyses of chickpea (Cicer arietinum L.) genotypes in response to salinity during the early stages of seedling growth. Journal of Biological and Environmental Sciences, 8 (23): 99-109.
  • Arefian, M. and Shafaroudi, S.M. 2015. Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress. Acta Physiologia Plantarum, 37: 193.
  • Arora, R., Pitchay, D.S. and Bearce, B.C. 1998. Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? Physiologia Plantarum, 103 (1): 24-34.
  • Ashraf, M. and Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3–16.
  • Ashraf, M. and Foolad, M.A. 2007. Improving plant abiotic stress resistance by exogenous application of osmo protectants glycine betaine and proline. Environmental and Experimental Botany, 59: 206–216.
  • Ashraf, M.A., Ashraf, M. and Ali, Q. 2010. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pakistan Journal of Botany, 42 (1): 559-565.
  • Azevedo Neto, A.D., Prisco, J.T., Enéas-Filho, J., de Abreu, C.E.B., Gomes-Filho, E., 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56 (1): 87-94.
  • Belmecheri-Cherifi, H., Albacete, A., Martínez-Andújar, C., Pérez-Alfocea, F. and Abrous-Belbachir, O. 2019. The growth impairment of salinized fenugreek (Trigonella foenum-graecum L.) plants is associated to changes in the hormonal balance. Journal of Plant Physiology, 232: 311-319.
  • Bostock, R. M., Pye, M. F., and Roubtsova, T. V. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of Phytopathology, 52: 517-549.
  • Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72: 248-254.
  • Brito, G., Costa, A., Fonseca, H. M., and Santos, C. V. 2003. Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotic stress. Scientia Horticulturae, 97(3-4): 411-417.
  • Celebi-Toprak, F., Behnam, B., Serrano, G., Kasuga, M., Yamaguchi-Shinozaki, K., Naka, H., Watanabe, J.A., Yamanaka, S. and Watanabe, K.N. 2005. Tolerance to salt stress of the transgenic tetrasomic tetraploid potato, Solanum tuberosum cv. Desiree appears to be induced by the DREB1A gene and rd29A promoter of Arabidopsis thaliana. Breeding Science, 55 (3): 311-319.
  • Chunthaburee, S., Dongsansuk, A., Sanitchon, J., Pattanagul, W. and Theerakulpisut, P., 2016. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi Journal of Biological Sciences, 23 (4): 467-477.
  • Çiçek, S., Kilercioğlu, B., Doğan, R. and Budaklı Çarpıcı, E. 2018. Bazı ileri makarnalık buğday (Triticum turgidum var. Durum L.) genotiplerinin çimlenme döneminde tuz stresine tepkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32 (2): 19-29.
  • Dajic, Z. 2006. Salt stress: Physiology and molecular biology of stress tolerance in plants, Ed: Madhava Rao, K.V., Raghavendra, A.S., Janardhan Reddy, K, Springer, Dordrecht, pp. 41-99.
  • Daneshmand, F., Arvin, M.J. and Kalantari, K.M. 2010. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiologiae Plantarum, 32 (1), 91-101.
  • Dubey, R.S. and Rani, M. 1989. Influence of NaCl salinity on growth and metabolic status of protein amino acids in rice seedling. Journal of Agronomy and Crop Science, 162: 97–106.
  • Dehnavi, M., Zarei, T., Khajeeyan, R., and Merajipoor, M. 2017. Drought and salinity impacts on bread wheat in a hydroponic culture: A physiological comparison. Journal of Plant Physiology and Breeding, 7(1), 61-74.
  • Faried, H. N., Ayyub, C. M., Amjad, M., and Ahmed, R. 2016. Salinity impairs ionic, physiological and biochemical attributes in potato. Pakistan Journal of Agricultural Sciences, 53(1).
  • Ghoulam, C., Foursy, A., and Fares, K. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47 (1): 39-50.
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.
  • Hosseini-Boldaji, S.A., Babakhani, B. and Hassan-Sajedi, R. 2017. The investigation of some biochemical and physiological responses of alfalfa (Medicago sativa L.) cultivars from Iran to NaCl salinity stress. Iranian Journal of Plant Physiology, 8 (1): 2269 -2276.
  • Heuer, B. and Nadler, A. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Science., 137: 43–51.
  • Hu, T., Yi, H and Hu, L. 2013. Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. Journal of American Society of Horticultural Science, 38: 350–357.
  • Jain, M., Mathur, G., Koul, S. and Sarin, N.B. 2001. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.), Plant Cell Reports, 20: 463-468.
  • Jamali, S.S., Borzouei, A., Aghamirzaei, M., Khosronejad, H.R. and Fathi, M. 2015. Cell membrane stability and biochemical response of seven wheat cultivars under salinity stress. Brazilian Journal of Botany, 38 (1): 63-69.
  • Jbir-Koubaa, R., Charfeddine, S., Ellouz, W., Saidi, M.N., Drira, N., Gargouri-Bouzid, R. and Nouri-Ellouz, O. 2015. Investigation of the response to salinity and to oxidative stress of inter specific potato somatic hybrids grown in a greenhouse, Plant Cell, Tissue and Organ Culture (PCTOC), 120 (3): 933-947.
  • Karakuş, M. 2008. Farklı tuz (NaCl) stresi koşullarında prolin uygulamalarının patateste fizyolojik ve morfolojik özelliklere etkileri, Yayınlanmamış Doktora Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı, 110 s.
  • Katerji, N., Mastrorilli, M., Lahmer, F. Z., Maalouf, F., and Oweis, T. 2011. Faba bean productivity in saline–drought conditions. European Journal of Agronomy, 35(1): 2-12.
  • Kikuchi, A., Huynh, H. D., Endo, T. and Watanabe, K.. 2015. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breeding Science, 65 (1): 85-102.
  • Liang, W., Ma, X., Wan, P., and Liu, L. 2018. Plant salt-tolerance mechanism: a review. Biochemical and Biophysical Research Communications, 495(1): 286-291.
  • Mansour, M.M.F. and Salama, K.H.A. 2004. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany, 52: 113-122.
  • Maršálová, L., Vítámvás, P., Hynek, R., Prášil, I.T. and Kosová, K. 2016. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte. Frontiers in Plant Science, 7:1154.
  • Newton, A. C., Johnson, S. N., and Gregory, P. J. 2011. Implications of climate change for diseases, crop yields and food security. Euphytica, 179(1): 3-18.
  • Nunes, C., de Sousa Araújo, S., da Silva, J.M., Fevereiro, M.P.S., and da Silva, A.B. 2008. Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environmental and Experimental Botany, 63 (1-3): 289-296.
  • Parida A.K. and Das A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324–49.
  • Passioura, J.B. 2010. Scaling up: The essence of effective agricultural research. Functional Plant Biology, 37: 585–591.
  • Popova, L.P., Stoinova, Z.G. and Maslenkova, L.T. 1995. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. Plant Growth Regulation, 14: 211–218.
  • Rajinder, S.D., Dhindsa, R.S., Plumb-Dhindsa, P. and Thorpe, T.A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1): 93-101.
  • Saleh, J., Maftoun, M., Safarzadeh, S., and Gholami, A. 2009. Growth, mineral composition, and biochemical changes of broad bean as affected by sodium chloride and zinc levels and sources. Communications in Soil Science and Plant Analysis, 40(19-20): 3046-3060.
  • Shen, S., Jing, Y. and Kuang, T. 2003. Proteomics approach to identify wound- response related proteins from rice leaf sheath. Proteomics, 3 (4): 527-535.
  • Singh, J., Singh, V. and Sharma, P.C. 2018. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiology and Molecular Biology of Plants, 24(3): 441-453.
  • Sobhanian, H., Aghaei, K. and Komatsu, S. 2011. Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops. Journal of Proteomics, 74 (8): 1323-1337.
  • Sofy, M.R., Sharaf, A.E.M., Osman, M.S. and Sofy, A.R. 2017. Physiological changes, antioxidant activity, lipid peroxidation and yield characters of salt stressed barely plant in response to treatment with Sargassum extract. International Journal of Advanced Research in Biological Sciences, 4: 90-109.
  • Taibi, K., Taïbi, F., Abderrahim, L A., Ennajah, A., Belkhodja, M. and Mulet, J. M. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L.. South African Journal of Botany, 105: 306-312.
  • Thiele, G., Theisen, K., Bonierbale, M. and Walker, T. 2010. Targeting the poor and hungry with potato science. Potato Journal, 37: 75‒86.
  • Turhan, E., and Eris, A. 2005. Effects of sodium chloride applications and different growth media on ionic composition in strawberry plant. Journal of Plant Nutrition, 27(9): 1653-1665.
  • Yeo, A.R. 1994. Physiological criteria in screening and breeding, In Soil Mineral Stresses, Springer, Berlin, Heidelberg pp. 37-59.
  • Zhang, X., Hu, L., and He, M.X. 2009. Scattering by pure seawater: effect of salinity. Optics Express, 17(7): 5698-5710.
  • Zhang, Z., Mao, B., Li, H., Zhou, W., Takeuchi, Y. and Yoneyama, K. 2005. Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiologiae Plantarum, 27 (4): 481-489.
  • Zrig, A., Mohamed, H. B., Tounekti, T., Ahmed, S. O., and Khemira, H. 2015. Differential responses of antioxidant enzymes in salt-stressed almond tree grown under sun and shade conditions. Journal of Plant Sciences and Research, 2:117-119.

On Dokuz Patates Çeşidinin Tuza Toleranslarının Değerlendirilmesi ve Toleransta Güvenilir Parametrelerin Belirlenmesi

Yıl 2020, Cilt: 34 Sayı: 2, 365 - 383, 01.12.2020

Öz

Bu çalışmada, genel tuzluluk toleransını farklı morfolojik ve fizyolojik özelliklerdeki değişiklikler ile ilişkilendirerek patates (Solanum tuberosum L.) bitkilerinin tuzluluk toleransındaki çeşit farklılıklarının araştırılması hedeflenmiştir. Ticari olarak kullanılan on dokuz patates çeşidi kontrollü serada 25-18 (± 2) ° C (gündüz/gece) sıcaklık ,% 70 bağıl nem, tuz uygulanmayan ve 5 dS m-1 NaCl koşulları altında 90 gün süre ile yetiştirilmiştir. Bu amaçla, yumrular toprak: torf: vermikülit (3:1:1) içeren 14L’lik saksılara dikilmiştir. Tuz uygulamalarına, tüm fidelerin çıkışından 1 hafta sonra başlanmıştır. Patates bitkilerinin tuz stresine toleransı, görsel zararlanma skalası, hücre membran zararlanma oranı ve lipit peroksidasyonunun göstergesi olan malondialdehit (MDA) içeriği ile belirlenmiştir. Yaprak oransal su kapsamı (YOSK), turgor kaybı (TK) ve toplam çözünür protein (TÇP) içeriği de incelenmiştir. Ayrıca bitkilerin yaprak dokularının protein profilleri SDS-PAGE ile değerlendirilmiştir. Sonuç olarak, değerlendirilen 19 patates çeşidi içerisinden Bettina, Challenger, Granola, Lady Claire, Musica ve Orchestra çeşitlerinin tuz stresine en duyarlı, Desiree ve Russet Burbank çeşitlerinin ise tuz stresine en toleranslı çeşitler olduğu belirlenmiştir. Veriler, düşük hücre membran zararı ve MDA içeriğinin Desiree ve Russet Burbank çeşitlerini nispeten tuza toleranslı çeşitler yaptığını göstermiştir. Ayrıca, görsel zararlanma skalası ve SDS-PAGE protein profillerinin de patates çeşitlerinin tuz stresine toleransında biyobelirteç olarak kullanılabileceği sonucuna varılmıştır.

Proje Numarası

201423A216

Kaynakça

  • Abdoli Nejad, R. and Shekafendeh, A. 2014. Salt stress-induced changes in leaf antioxidant activity, proline and protein content in Shah Anjir and Anjir Shiraz fig seedlings. International Journal of Horticultural Science and. Technology, 1 (2): 121–129.
  • Aghaei, K., Ehsanpour, A.A. and Komatsu, S. 2008. Proteome analysis of potato under salt stress. Journal of Proteome Research, 7: 4858–4868.
  • Aghaei, K., Ehsanpour, A.A. and Komatsu, S. 2009. Potato responds to salt stress by increased activity of antioxidant enzymes. Journal of Integrative Plant Biology, 51: 1095–103.
  • Aksoy, E., Demirel, U., Öztürk, Z.N., Çalışkan, S. and Çalışkan, M.E. 2015. Recent advances in potato genomics, transcriptomics, and transgenics under drought and heat stresses: A review. Turkish Journal of Botany, 39 (6): 920-940.
  • Al-Hussaini, Z.A., Yousif, S.H.A., and Al-Ajeely, S.A. 2015. Effect of different medium on callus induction and regeneration in potato cultivars. International Journal of Current Microbiology and Applied Sciences, 4(5): 856-865.
  • Arefian, M., Vessal, S. and Bagheri, A. 2014. Biochemical changes and SDS-PAGE analyses of chickpea (Cicer arietinum L.) genotypes in response to salinity during the early stages of seedling growth. Journal of Biological and Environmental Sciences, 8 (23): 99-109.
  • Arefian, M. and Shafaroudi, S.M. 2015. Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress. Acta Physiologia Plantarum, 37: 193.
  • Arora, R., Pitchay, D.S. and Bearce, B.C. 1998. Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? Physiologia Plantarum, 103 (1): 24-34.
  • Ashraf, M. and Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3–16.
  • Ashraf, M. and Foolad, M.A. 2007. Improving plant abiotic stress resistance by exogenous application of osmo protectants glycine betaine and proline. Environmental and Experimental Botany, 59: 206–216.
  • Ashraf, M.A., Ashraf, M. and Ali, Q. 2010. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pakistan Journal of Botany, 42 (1): 559-565.
  • Azevedo Neto, A.D., Prisco, J.T., Enéas-Filho, J., de Abreu, C.E.B., Gomes-Filho, E., 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56 (1): 87-94.
  • Belmecheri-Cherifi, H., Albacete, A., Martínez-Andújar, C., Pérez-Alfocea, F. and Abrous-Belbachir, O. 2019. The growth impairment of salinized fenugreek (Trigonella foenum-graecum L.) plants is associated to changes in the hormonal balance. Journal of Plant Physiology, 232: 311-319.
  • Bostock, R. M., Pye, M. F., and Roubtsova, T. V. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of Phytopathology, 52: 517-549.
  • Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72: 248-254.
  • Brito, G., Costa, A., Fonseca, H. M., and Santos, C. V. 2003. Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotic stress. Scientia Horticulturae, 97(3-4): 411-417.
  • Celebi-Toprak, F., Behnam, B., Serrano, G., Kasuga, M., Yamaguchi-Shinozaki, K., Naka, H., Watanabe, J.A., Yamanaka, S. and Watanabe, K.N. 2005. Tolerance to salt stress of the transgenic tetrasomic tetraploid potato, Solanum tuberosum cv. Desiree appears to be induced by the DREB1A gene and rd29A promoter of Arabidopsis thaliana. Breeding Science, 55 (3): 311-319.
  • Chunthaburee, S., Dongsansuk, A., Sanitchon, J., Pattanagul, W. and Theerakulpisut, P., 2016. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi Journal of Biological Sciences, 23 (4): 467-477.
  • Çiçek, S., Kilercioğlu, B., Doğan, R. and Budaklı Çarpıcı, E. 2018. Bazı ileri makarnalık buğday (Triticum turgidum var. Durum L.) genotiplerinin çimlenme döneminde tuz stresine tepkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32 (2): 19-29.
  • Dajic, Z. 2006. Salt stress: Physiology and molecular biology of stress tolerance in plants, Ed: Madhava Rao, K.V., Raghavendra, A.S., Janardhan Reddy, K, Springer, Dordrecht, pp. 41-99.
  • Daneshmand, F., Arvin, M.J. and Kalantari, K.M. 2010. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiologiae Plantarum, 32 (1), 91-101.
  • Dubey, R.S. and Rani, M. 1989. Influence of NaCl salinity on growth and metabolic status of protein amino acids in rice seedling. Journal of Agronomy and Crop Science, 162: 97–106.
  • Dehnavi, M., Zarei, T., Khajeeyan, R., and Merajipoor, M. 2017. Drought and salinity impacts on bread wheat in a hydroponic culture: A physiological comparison. Journal of Plant Physiology and Breeding, 7(1), 61-74.
  • Faried, H. N., Ayyub, C. M., Amjad, M., and Ahmed, R. 2016. Salinity impairs ionic, physiological and biochemical attributes in potato. Pakistan Journal of Agricultural Sciences, 53(1).
  • Ghoulam, C., Foursy, A., and Fares, K. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47 (1): 39-50.
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.
  • Hosseini-Boldaji, S.A., Babakhani, B. and Hassan-Sajedi, R. 2017. The investigation of some biochemical and physiological responses of alfalfa (Medicago sativa L.) cultivars from Iran to NaCl salinity stress. Iranian Journal of Plant Physiology, 8 (1): 2269 -2276.
  • Heuer, B. and Nadler, A. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Science., 137: 43–51.
  • Hu, T., Yi, H and Hu, L. 2013. Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. Journal of American Society of Horticultural Science, 38: 350–357.
  • Jain, M., Mathur, G., Koul, S. and Sarin, N.B. 2001. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.), Plant Cell Reports, 20: 463-468.
  • Jamali, S.S., Borzouei, A., Aghamirzaei, M., Khosronejad, H.R. and Fathi, M. 2015. Cell membrane stability and biochemical response of seven wheat cultivars under salinity stress. Brazilian Journal of Botany, 38 (1): 63-69.
  • Jbir-Koubaa, R., Charfeddine, S., Ellouz, W., Saidi, M.N., Drira, N., Gargouri-Bouzid, R. and Nouri-Ellouz, O. 2015. Investigation of the response to salinity and to oxidative stress of inter specific potato somatic hybrids grown in a greenhouse, Plant Cell, Tissue and Organ Culture (PCTOC), 120 (3): 933-947.
  • Karakuş, M. 2008. Farklı tuz (NaCl) stresi koşullarında prolin uygulamalarının patateste fizyolojik ve morfolojik özelliklere etkileri, Yayınlanmamış Doktora Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı, 110 s.
  • Katerji, N., Mastrorilli, M., Lahmer, F. Z., Maalouf, F., and Oweis, T. 2011. Faba bean productivity in saline–drought conditions. European Journal of Agronomy, 35(1): 2-12.
  • Kikuchi, A., Huynh, H. D., Endo, T. and Watanabe, K.. 2015. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breeding Science, 65 (1): 85-102.
  • Liang, W., Ma, X., Wan, P., and Liu, L. 2018. Plant salt-tolerance mechanism: a review. Biochemical and Biophysical Research Communications, 495(1): 286-291.
  • Mansour, M.M.F. and Salama, K.H.A. 2004. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany, 52: 113-122.
  • Maršálová, L., Vítámvás, P., Hynek, R., Prášil, I.T. and Kosová, K. 2016. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte. Frontiers in Plant Science, 7:1154.
  • Newton, A. C., Johnson, S. N., and Gregory, P. J. 2011. Implications of climate change for diseases, crop yields and food security. Euphytica, 179(1): 3-18.
  • Nunes, C., de Sousa Araújo, S., da Silva, J.M., Fevereiro, M.P.S., and da Silva, A.B. 2008. Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environmental and Experimental Botany, 63 (1-3): 289-296.
  • Parida A.K. and Das A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324–49.
  • Passioura, J.B. 2010. Scaling up: The essence of effective agricultural research. Functional Plant Biology, 37: 585–591.
  • Popova, L.P., Stoinova, Z.G. and Maslenkova, L.T. 1995. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. Plant Growth Regulation, 14: 211–218.
  • Rajinder, S.D., Dhindsa, R.S., Plumb-Dhindsa, P. and Thorpe, T.A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1): 93-101.
  • Saleh, J., Maftoun, M., Safarzadeh, S., and Gholami, A. 2009. Growth, mineral composition, and biochemical changes of broad bean as affected by sodium chloride and zinc levels and sources. Communications in Soil Science and Plant Analysis, 40(19-20): 3046-3060.
  • Shen, S., Jing, Y. and Kuang, T. 2003. Proteomics approach to identify wound- response related proteins from rice leaf sheath. Proteomics, 3 (4): 527-535.
  • Singh, J., Singh, V. and Sharma, P.C. 2018. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiology and Molecular Biology of Plants, 24(3): 441-453.
  • Sobhanian, H., Aghaei, K. and Komatsu, S. 2011. Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops. Journal of Proteomics, 74 (8): 1323-1337.
  • Sofy, M.R., Sharaf, A.E.M., Osman, M.S. and Sofy, A.R. 2017. Physiological changes, antioxidant activity, lipid peroxidation and yield characters of salt stressed barely plant in response to treatment with Sargassum extract. International Journal of Advanced Research in Biological Sciences, 4: 90-109.
  • Taibi, K., Taïbi, F., Abderrahim, L A., Ennajah, A., Belkhodja, M. and Mulet, J. M. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L.. South African Journal of Botany, 105: 306-312.
  • Thiele, G., Theisen, K., Bonierbale, M. and Walker, T. 2010. Targeting the poor and hungry with potato science. Potato Journal, 37: 75‒86.
  • Turhan, E., and Eris, A. 2005. Effects of sodium chloride applications and different growth media on ionic composition in strawberry plant. Journal of Plant Nutrition, 27(9): 1653-1665.
  • Yeo, A.R. 1994. Physiological criteria in screening and breeding, In Soil Mineral Stresses, Springer, Berlin, Heidelberg pp. 37-59.
  • Zhang, X., Hu, L., and He, M.X. 2009. Scattering by pure seawater: effect of salinity. Optics Express, 17(7): 5698-5710.
  • Zhang, Z., Mao, B., Li, H., Zhou, W., Takeuchi, Y. and Yoneyama, K. 2005. Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiologiae Plantarum, 27 (4): 481-489.
  • Zrig, A., Mohamed, H. B., Tounekti, T., Ahmed, S. O., and Khemira, H. 2015. Differential responses of antioxidant enzymes in salt-stressed almond tree grown under sun and shade conditions. Journal of Plant Sciences and Research, 2:117-119.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi, Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Çiğdem Aydoğan 0000-0003-4884-5304

Ece Turhan 0000-0003-0991-3802

Proje Numarası 201423A216
Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 29 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 34 Sayı: 2

Kaynak Göster

APA Aydoğan, Ç., & Turhan, E. (2020). Evaluation of Nineteen Potato Cultivars for Salt Tolerance and Determination of Reliable Parameters in Tolerance. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 34(2), 365-383.

TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.

Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.



Makale başvurusunda;

(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)

(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),

(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)

(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,

(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.

Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür. 


25056 

Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.