Research Article
BibTex RIS Cite

Evaluation of Factors Affecting Energy Aspects of Apple Slices by Response Surface Methodology in Convective Drying

Year 2022, Volume: 36 Issue: 2, 265 - 283, 01.12.2022
https://doi.org/10.20479/bursauludagziraat.1051109

Abstract

In this study, the effects of independent variables in convective drying methods two different apple
varieties (Granny Smith and Red Delicious) such as drying temperature (50, 55 and 60°C), sample thickness (5, 7 and 9 mm) and drying time (8, 9 and 10 hours) on specific energy consumption, specific moisture extraction rate, energy efficiency, thermal efficiency, and effective moisture diffusivity were investigated. According to the findings, it was determined that the quadratic polynomial equations were successful in representing the response variables. In addition, according to the ANOVA results, it was determined that the independent variables had a statistically significant effect on the response variables (p<0.05). Considering all control factors, optimum conditions were determined to be 50ºC, 7.31 mm and 8.00 hours (desirability=0.801) for Granny Smith variety, and 50ºC, 9.00 mm and 8.00 hours (desirability=0.847) for Red Delicious variety. Optimization results revealed that convective drying performed very well for apple slices.

References

  • Abbaspour-Gilandeh, Y., Kaveh, M. and Aziz, M. 2020. Ultrasonic-microwave and infrared assisted convective drying of carrot: Drying kinetic, quality and energy consumption. Applied Sciences, 10(18): 6309.
  • Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. 2012. Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosystems Engineering, 111: 229–41.
  • Akpinar, E. K., Midilli, A. and Biçer, Y. 2003. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Conversion and Management, 44: 1689–1705. Akpinar, E. K. 2010. Drying of mint leaves in a solar dryer and under open sun: modelling performance analyses. Energy Conversion and Management, 51: 2407-2418.
  • Arslan, D. and Özcan, M. M. 2010. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT-Food Science and Technology, 43(7): 1121-1127.
  • Beigi, M. 2016a. Influence of drying air parameters on mass transfer characteristics of apple slices. Heat Mass Transfer, 52: 2213-2221.
  • Beigi, M. 2016b. Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8): 1435-1442.
  • Box, G. E. P. and Behnken, D. W. 1960. Some new three level designs for the study of quantitative variables. Technometrics, 2: 455-475.
  • Chayjan, R. A., Kaveh, M., Dibagar, N. and Nejad, M. Z. 2017. Optimization of pistachio nut drying in a fluidized bed dryer with microwave pretreatment applying response surface methodology. Chemical Product and Process Modeling, 12: 20160048.
  • Contreras, C., Martín-Esparza, M. E., Chiralt, A. and Martínez-Navarrete, N. 2008. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1): 55-64.
  • Crank, J. 1975. Mathematics of Diffusion. 2nd ed; Oxford University Press: London UK p 414.
  • Cruz, A. C., Guiné, R. P. and Gonçalves, J. C. 2015. Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). International Journal of Fruit Science, 15(1): 54-78.
  • Design Expert 1305, 2021. Software for design of experiments Stat-Ease Inc Minneapolis USA.
  • Erbay, Z. and Icier, F. 2009. Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4): 533-541.
  • Food and Agriculture Organization (FAO) 2021. FAOSTAT Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) İstatistik Veritabanı. Erişim tarihi: Kasım 2021).
  • Giri, S. K. and Prasad, S. 2007. Optimization of microwave-vacuum drying of button mushrooms using response-surface methodology. Drying Technology, 25(5), 901-911.
  • Halil, T., Tamer, C. E. and Karabacak, A. Ö. 2019. Farklı yöntemlerle kurutulan yeşil zeytin katkılı cipslerin kurutma kinetiği ve bazı kalite parametrelerinin incelenmesi. Bursa Uludag Üniv. Ziraat Fak. Derg., 33(1): 123-142.
  • Henderson, S. M. and Pabis, S. 1961. Grain drying theory. I. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6: 169–174.
  • Horuz, E., Bozkurt, H., Karataş, H. and Maskan, M. 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics total phenolics antioxidant capacity vitamin C color and rehydration capacity of sour cherries. Food Chemistry, 230: 295-305.
  • Horuz, E., Bozkurt, H., Karataş, H. and Maskan, M. 2018. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics modeling temperature profile and energy aspect. Heat Mass Transfer, 54: 425-436.
  • Kaleta, A. and Gornicki, K. 2010. Evaluation of drying models of apple (var McIntosh) dried in a convective dryer. International Journal Food Science Technology, 45: 891-898.
  • Karaman, K. and Sagdic, O. 2019. Zygosaccharomyces bailii and Z rouxii induced ethanol formation in apple juice supplemented with different natural preservatives: A response surface methodology approach. Journal of Microbiological Methods, 163: 105659.
  • Kaur, S., Sarkar, B. C., Sharma, H. K. and Singh, C. 2009. Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology. Food Bioprocess Technology, 2: 96-100.
  • Kaya, A., Aydin, O. and Akgun, M. 2011. Drying kinetics and moisture transfer parameters of hazelnut. Journal Food Process Preservation, 35: 714–721.
  • Koç, B. and Kaymak-Ertekin, F. 2010. Yanıt yüzey yöntemi ve gıda işleme uygulamaları. Gıda, 35(1), 1-8.
  • Kumar, D., Prasad, S. and Murthy, G. S. 2014. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Journal of Food Science and Technology, 51(2): 221-232.
  • Li, L., Zhang, M., Bhandari, B. and Zhou, L. 2018. LF-NMR online detection of water dynamics in apple cubes during microwave vacuum drying. Drying Technology, 36: 2006-2015.
  • Liu, H., Yousaf, K., Yu, Z., Riaz, A., Nyalala, I., Chattha, M. W. A. and Chen, K. 2021. Drying process optimization of garlic slices in closed‐loop heat pump drying system by Box‐Behnken design. Journal of Food Processing and Preservation, e16190.
  • Majdi, H., Esfahani, J. A. and Mohebbi, M. 2019. Optimization of convective drying by response surface methodology. Computers and Electronics in Agriculture, 156: 574-584.
  • Marques, L. G. and Freire, J. T. 2005. Analysis of freeze-drying of tropical fruits. Drying Technology, 23: 2169- 2184.
  • Montgomery, D.C. 2001. Design and analysis of experiments, John Wiley and Sons, 427-510.
  • Motevali, A., Minaei, S., Banakar, A., Ghobadian, B. and Darvishi, H. 2016. Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. Journal Saudi Society Agricultural Sciences, 15: 179-187.
  • Myers, R. H. and Montgomery D.C. 2002. Response surface methodology process and product optimization using designed experiments, John Wiley and Sons, 17-85, 203-303.
  • Obajemihi, O. I., Olaoye, J. O., Cheng, J. H., Ojediran, J. O. and Sun, D. W. 2021. Optimization of process conditions for moisture ratio and effective moisture diffusivity of tomato during convective hot‐air drying using response surface methodology. Journal of Food Processing and Preservation, 45(4): e15287.
  • Page, G. 1949. Factors influencing the maximum rates of air-drying shelled corn in thin layer. M.S. Thesis. Purdue University West Lafayette, Indiana: USA.
  • Pinar, H., Çetin, N., Ciftci, B., Karaman, K. and Kaplan, M. 2021. Biochemical composition, drying kinetics and chromatic parameters of red pepper as affected by cultivars and drying methods. Journal of Food Composition and Analysis, 102: 103976.
  • Sahin, A. Z. and Dincer, I. 2002. Graphical determination of drying process and moisture transfer parameters for solids drying. International Journal of Heat Mass Transfer, 45: 3267-3273.
  • Salehi, F., Kashaninejad, M. and Jafarianlari, A. 2017. Drying kinetics and characteristics of combined infraredvacuum drying of button mushroom slices. Heat Mass Transfer, 53: 1751-1759.
  • Šumić, Z., Vakula, A., Tepić, A., Čakarević, J., Vitas, J. and Pavlić, B. 2016. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chemistry, 203: 465-475.
  • Taheri-Garavand, A., Karimi, F., Karimi, M., Lotfi, V. and Khoobbakht, G. 2018. Hybrid response surface methodology–artificial neural network optimization of drying process of banana slices in a forced convective dryer. Food Science and Technology International, 24(4): 277-291.
  • Taskin, O. 2020. Evaluation of freeze drying for whole, half cut and puree black chokeberry (Aronia melanocarpa L.). Heat and Mass Transfer, 56(8): 2503-2513.
  • Yaldiz, O., Ertekin, C. and Uzun, H. I. 2001. Mathematical modeling of thin layer solar drying of Sultana grapes. Energy, 26: 457–465.

Elma Dilimlerinin Konvektif Kurutulmasında Enerji Özelliklerine Etki Eden Faktörlerin Yanıt Yüzeyi Yöntemi ile Değerlendirilmesi

Year 2022, Volume: 36 Issue: 2, 265 - 283, 01.12.2022
https://doi.org/10.20479/bursauludagziraat.1051109

Abstract

Bu çalışmada, konvektif kurutma yönteminin iki farklı elma çeşidinin (Granny Smith ve Red Delicious)
kurutulmasında, kurutma sıcaklığı (50, 55 ve 60°C), numune kalınlığı (5, 7 ve 9 mm) ve kuruma süresi (8, 9 ve 10 saat) gibi bağımsız değişkenlerin özgül enerji tüketimi, özgül nem çekme oranı, enerji verimliliği, termal etkinlik ve efektif nem difüzyonu özelliklerine etkisi incelenmiştir. Bulgulara göre, ikinci derece polinom denklemlerinin yanıt değişkenlerini temsil etmede başarılı olduğu tespit edilmiştir. Ayrıca ANOVA sonuçlarına göre bağımsız değişkenlerin yanıt değişkenleri üzerinde istatistiksel olarak önemli seviyede etkili olduğu belirlenmiştir (p<0.05). Tüm kontrol faktörleri dikkate alındığında optimum koşulların, Granny Smith çeşidi için 50ºC, 7.31 mm ve 8.00 saat (arzu edilebilirlik=0.801), Red Delicious için ise 50ºC, 9.00 mm ve 8.00 saat (arzu edilebilirlik=0.847) olduğu belirlenmiştir. Optimizasyon sonuçları, konvektif kurutmanın, elma dilimleri için iyi bir performans gösterdiğini ortaya koymuştur.

References

  • Abbaspour-Gilandeh, Y., Kaveh, M. and Aziz, M. 2020. Ultrasonic-microwave and infrared assisted convective drying of carrot: Drying kinetic, quality and energy consumption. Applied Sciences, 10(18): 6309.
  • Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. 2012. Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosystems Engineering, 111: 229–41.
  • Akpinar, E. K., Midilli, A. and Biçer, Y. 2003. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Conversion and Management, 44: 1689–1705. Akpinar, E. K. 2010. Drying of mint leaves in a solar dryer and under open sun: modelling performance analyses. Energy Conversion and Management, 51: 2407-2418.
  • Arslan, D. and Özcan, M. M. 2010. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT-Food Science and Technology, 43(7): 1121-1127.
  • Beigi, M. 2016a. Influence of drying air parameters on mass transfer characteristics of apple slices. Heat Mass Transfer, 52: 2213-2221.
  • Beigi, M. 2016b. Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8): 1435-1442.
  • Box, G. E. P. and Behnken, D. W. 1960. Some new three level designs for the study of quantitative variables. Technometrics, 2: 455-475.
  • Chayjan, R. A., Kaveh, M., Dibagar, N. and Nejad, M. Z. 2017. Optimization of pistachio nut drying in a fluidized bed dryer with microwave pretreatment applying response surface methodology. Chemical Product and Process Modeling, 12: 20160048.
  • Contreras, C., Martín-Esparza, M. E., Chiralt, A. and Martínez-Navarrete, N. 2008. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1): 55-64.
  • Crank, J. 1975. Mathematics of Diffusion. 2nd ed; Oxford University Press: London UK p 414.
  • Cruz, A. C., Guiné, R. P. and Gonçalves, J. C. 2015. Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). International Journal of Fruit Science, 15(1): 54-78.
  • Design Expert 1305, 2021. Software for design of experiments Stat-Ease Inc Minneapolis USA.
  • Erbay, Z. and Icier, F. 2009. Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4): 533-541.
  • Food and Agriculture Organization (FAO) 2021. FAOSTAT Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) İstatistik Veritabanı. Erişim tarihi: Kasım 2021).
  • Giri, S. K. and Prasad, S. 2007. Optimization of microwave-vacuum drying of button mushrooms using response-surface methodology. Drying Technology, 25(5), 901-911.
  • Halil, T., Tamer, C. E. and Karabacak, A. Ö. 2019. Farklı yöntemlerle kurutulan yeşil zeytin katkılı cipslerin kurutma kinetiği ve bazı kalite parametrelerinin incelenmesi. Bursa Uludag Üniv. Ziraat Fak. Derg., 33(1): 123-142.
  • Henderson, S. M. and Pabis, S. 1961. Grain drying theory. I. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6: 169–174.
  • Horuz, E., Bozkurt, H., Karataş, H. and Maskan, M. 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics total phenolics antioxidant capacity vitamin C color and rehydration capacity of sour cherries. Food Chemistry, 230: 295-305.
  • Horuz, E., Bozkurt, H., Karataş, H. and Maskan, M. 2018. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics modeling temperature profile and energy aspect. Heat Mass Transfer, 54: 425-436.
  • Kaleta, A. and Gornicki, K. 2010. Evaluation of drying models of apple (var McIntosh) dried in a convective dryer. International Journal Food Science Technology, 45: 891-898.
  • Karaman, K. and Sagdic, O. 2019. Zygosaccharomyces bailii and Z rouxii induced ethanol formation in apple juice supplemented with different natural preservatives: A response surface methodology approach. Journal of Microbiological Methods, 163: 105659.
  • Kaur, S., Sarkar, B. C., Sharma, H. K. and Singh, C. 2009. Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology. Food Bioprocess Technology, 2: 96-100.
  • Kaya, A., Aydin, O. and Akgun, M. 2011. Drying kinetics and moisture transfer parameters of hazelnut. Journal Food Process Preservation, 35: 714–721.
  • Koç, B. and Kaymak-Ertekin, F. 2010. Yanıt yüzey yöntemi ve gıda işleme uygulamaları. Gıda, 35(1), 1-8.
  • Kumar, D., Prasad, S. and Murthy, G. S. 2014. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Journal of Food Science and Technology, 51(2): 221-232.
  • Li, L., Zhang, M., Bhandari, B. and Zhou, L. 2018. LF-NMR online detection of water dynamics in apple cubes during microwave vacuum drying. Drying Technology, 36: 2006-2015.
  • Liu, H., Yousaf, K., Yu, Z., Riaz, A., Nyalala, I., Chattha, M. W. A. and Chen, K. 2021. Drying process optimization of garlic slices in closed‐loop heat pump drying system by Box‐Behnken design. Journal of Food Processing and Preservation, e16190.
  • Majdi, H., Esfahani, J. A. and Mohebbi, M. 2019. Optimization of convective drying by response surface methodology. Computers and Electronics in Agriculture, 156: 574-584.
  • Marques, L. G. and Freire, J. T. 2005. Analysis of freeze-drying of tropical fruits. Drying Technology, 23: 2169- 2184.
  • Montgomery, D.C. 2001. Design and analysis of experiments, John Wiley and Sons, 427-510.
  • Motevali, A., Minaei, S., Banakar, A., Ghobadian, B. and Darvishi, H. 2016. Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. Journal Saudi Society Agricultural Sciences, 15: 179-187.
  • Myers, R. H. and Montgomery D.C. 2002. Response surface methodology process and product optimization using designed experiments, John Wiley and Sons, 17-85, 203-303.
  • Obajemihi, O. I., Olaoye, J. O., Cheng, J. H., Ojediran, J. O. and Sun, D. W. 2021. Optimization of process conditions for moisture ratio and effective moisture diffusivity of tomato during convective hot‐air drying using response surface methodology. Journal of Food Processing and Preservation, 45(4): e15287.
  • Page, G. 1949. Factors influencing the maximum rates of air-drying shelled corn in thin layer. M.S. Thesis. Purdue University West Lafayette, Indiana: USA.
  • Pinar, H., Çetin, N., Ciftci, B., Karaman, K. and Kaplan, M. 2021. Biochemical composition, drying kinetics and chromatic parameters of red pepper as affected by cultivars and drying methods. Journal of Food Composition and Analysis, 102: 103976.
  • Sahin, A. Z. and Dincer, I. 2002. Graphical determination of drying process and moisture transfer parameters for solids drying. International Journal of Heat Mass Transfer, 45: 3267-3273.
  • Salehi, F., Kashaninejad, M. and Jafarianlari, A. 2017. Drying kinetics and characteristics of combined infraredvacuum drying of button mushroom slices. Heat Mass Transfer, 53: 1751-1759.
  • Šumić, Z., Vakula, A., Tepić, A., Čakarević, J., Vitas, J. and Pavlić, B. 2016. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chemistry, 203: 465-475.
  • Taheri-Garavand, A., Karimi, F., Karimi, M., Lotfi, V. and Khoobbakht, G. 2018. Hybrid response surface methodology–artificial neural network optimization of drying process of banana slices in a forced convective dryer. Food Science and Technology International, 24(4): 277-291.
  • Taskin, O. 2020. Evaluation of freeze drying for whole, half cut and puree black chokeberry (Aronia melanocarpa L.). Heat and Mass Transfer, 56(8): 2503-2513.
  • Yaldiz, O., Ertekin, C. and Uzun, H. I. 2001. Mathematical modeling of thin layer solar drying of Sultana grapes. Energy, 26: 457–465.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Necati Çetin 0000-0001-8524-8272

Publication Date December 1, 2022
Submission Date December 30, 2021
Published in Issue Year 2022 Volume: 36 Issue: 2

Cite

APA Çetin, N. (2022). Elma Dilimlerinin Konvektif Kurutulmasında Enerji Özelliklerine Etki Eden Faktörlerin Yanıt Yüzeyi Yöntemi ile Değerlendirilmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 36(2), 265-283. https://doi.org/10.20479/bursauludagziraat.1051109

TR Dizin kriterleri gereği dergimize gönderilecek olan makalelerin mutlaka aşağıda belirtilen hususlara uyması gerekmektedir.

Tüm bilim dallarında yapılan, ve etik kurul kararı gerektiren klinik ve deneysel insan ve hayvanlar üzerindeki çalışmalar için ayrı ayrı etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
Makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmelidir.
Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.
Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi.
Etik Kurul izni gerektiren araştırmalar aşağıdaki gibidir.
- Anket, mülakat, odak grup çalışması, gözlem, deney, görüşme teknikleri kullanılarak katılımcılardan veri toplanmasını gerektiren nitel ya da nicel yaklaşımlarla yürütülen her türlü araştırmalar
- İnsan ve hayvanların (materyal/veriler dahil) deneysel ya da diğer bilimsel amaçlarla kullanılması,
- İnsanlar üzerinde yapılan klinik araştırmalar,
- Hayvanlar üzerinde yapılan araştırmalar,
- Kişisel verilerin korunması kanunu gereğince retrospektif çalışmalar,
Ayrıca;
- Olgu sunumlarında “Aydınlatılmış onam formu”nun alındığının belirtilmesi,
- Başkalarına ait ölçek, anket, fotoğrafların kullanımı için sahiplerinden izin alınması ve belirtilmesi,
- Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine uyulduğunun belirtilmesi.



Makale başvurusunda;

(1) Tam metin makale, Dergi yazım kurallarına uygun olmalı, Makalenin ilk sayfasında ve teşekkür bilgi notu kısmında Araştırma ve Yayın Etiğine uyulduğuna ve Etik kurul izni gerektirmediğine dair ifadeye yer verilmelidir. Etik kurul izni gerektiren çalışmalarda, izinle ilgili bilgiler (kurul adı, tarih ve sayı no) yöntem bölümünde ve ayrıca makale ilk/son sayfasında yer verilmeli ve sisteme belgenin yüklenmesi gerekmektedir. (Dergiye gönderilen makalelerde; konu ile ilgili olarak derginin daha önceki sayılarında yayımlanan en az bir yayına atıf yapılması önem arz etmektedir. Dergiye yapılan atıflarda “Bursa Uludag Üniv. Ziraat Fak. Derg.” kısaltması kullanılmalıdır.)

(2) Tam metin makalenin taratıldığını gösteren benzerlik raporu (Ithenticate, intihal.net) (% 20’nin altında olmalıdır),

(3) İmzalanmış ve taratılmış başvuru formu, Dergi web sayfasında yer alan başvuru formunun başvuran tarafından İmzalanıp, taratılarak yüklenmesi , (Ön yazı yerine)

(4) Tüm yazarlar tarafından imzalanmış telif hakkı devir formunun taranmış kopyası,

(5) Araştırmacıların Katkı Oranı beyanı, Çıkar Çatışması beyanı verilmesi Makale sonunda; Araştırmacıların Katkı Oranı beyanı, varsa Destek ve Teşekkür Beyanı, Çatışma Beyanı verilmesi ve sisteme belgenin (Tüm yazarlar tarafından imzalanmış bir yazı) yüklenmesi gerekmektedir.

Belgelerin elektronik formatta DergiPark sistemine https://dergipark.org.tr/tr/login adresinden kayıt olunarak başvuru sırasında yüklenmesi mümkündür. 


25056 

Journal of Agricultural Faculty of Bursa Uludag University is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.