Research Article
BibTex RIS Cite

Blast Resistant Design in Cold Regions

Year 2024, Volume: 5 Issue: 1, 1 - 28, 15.06.2024

Abstract

An increasing interest of oil and gas production industries into the Arctic region has encouraged the research on cold resistant materials and structures. Since these oil and gas facilities handle hydrocarbons and other inflammable fuels, there have been incidences and always been a high potential risk of accidental explosions. In the past few decades considerable emphasis has been given to the safety concerns related to blast and achieving a ‘Blast Resistant Design’. This paper provides an overview of the blast analysis techniques being currently employed in the industry to assess the dynamic response of structures subjected blast loading. In addition, a comprehensive overview is presented for the low temperature effects on the engineering properties of materials that are in use or that can be potentially used for the Arctic industrial structures. Currently, there are no specific industry standards or guidelines addressing blast resistant design of structures under low temperature conditions. Owing to this fact, this paper introduces various recommendations for blast assessments of both the existing and proposed structures in the Arctic or low service temperatures.

References

  • United States Energy Information Administration. Russian Metals for Arctic Offshore Structures, Pavel layus and Arctic Oil and Natural Gas Resources; 2021 [cited July 2021]. Available from: https://www.eia.gov/, www.eia.doe.gov/
  • Sohn, J. M., Kim, S. J., Seong, D. J., Kim, B. J., Ha, Y. C., Seo, J. K., & Paik, J. K. Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions. Structural engineering and mechanics: An international journal. 2014, 51(5), 755-771.
  • Yan, J. B., Liu, X. M., Liew, J. R., Qian, X., & Zhang, M. H. Steel–concrete–steel sandwich system in Arctic offshore structure: Materials, experiments, and design. Materials & Design. 2016 91, 111-121.
  • NOAA. National Oceanic and Atmospheric Administration; 2021 [cited July 2021]. Available from: https://www.noaa.gov/
  • ISO 19902. Petroleum and natural gas industries — Fixed steel offshore structures. 2020.
  • Stephen, J. J., Anandavalli, N., Ponnudurai, R., & Prakash, A. Behaviour of steel-concrete composite panels subjected to blast loads. Education. 2010
  • Biggs JM. Introduction to Structural Dynamics. McGraw-Hill: New York; 1964.
  • Mocibob, D. Glass panel under shear loading: use of glass envelopes in building stabilization (No. 4185). EPFL. 2008.
  • UFC 3-340-02. Structures to Resist the Effects of Accidental Explosions. Unified Facilities Criteria. 2008.
  • ASCE. Design of Blast-Resistant Buildings in Petrochemical Facilities, 2nd edition, 2010.
  • Burgan B. Elevated temperature and high strain rate properties of offshore steels. Offshore Technology Report 2001/020. 2001.
  • Bogosian D, Avenessian HD. To Film or Not To Film: Effects of Anti-Shatter Film on Blunt Trauma Lethality From Tempered Glass. 17th International Symposium on Military Aspects of Blast and Shock. Las Vegas; 2002.
  • Dutta PK. Special Report 88-9 Behavior of Materials at Cold Regions Temperatures. Part 1: Program Rationale and Test Plan. US Army Corps. of Engineers. 1988.
  • Salmon CG and Johnson JE. Steel Structures, Design and behavior. 4th Ed. Pearson; 1995.
  • Brechna H, Hartwig G, and Schauer W. Cryogenic properties of metallic and non-metallic materials utilized in low temperature and superconducting magnets. Proceedings, 8th International Conference on High-Energy Accelerators. Geneva, Switzerland; 1971.
  • Seop S, Hae-Moo L, and Moon-Saeng K. Impact tensile behavior of 9% nickel steel at low temperature. International Journal of Impact Engineering. 2000;24(6-7).
  • BS EN 1993-1-10:2005 - Eurocode 3: Design of steel structures, Material toughness and through-thickness properties. 2005.
  • ASTM-A709M-11 Standard Specification for Structural Steel for Bridges. 2020.
  • Montejo LA, Sloan JE, Kowalsky MJ, Hassan T. Cyclic Response of Reinforced Concrete Members at Low Temperatures. Journal of Cold Regions Engineering. 2008;22(3).
  • Montejo L, Marx E. and Kowalsky. M., Seismic Design of Reinforced Concrete Bridge Columns at Subfreezing Temperatures. ACI Structural Journal. 2010;107(4).
  • Kropschot RH, Mikesell RP. Strength and Fatigue of Glass at Very Low Temperatures. Journal of Applied Physics. 1957;28(5):610-614.

Soğuk Bölgelerde Patlamaya Göre Tasarım

Year 2024, Volume: 5 Issue: 1, 1 - 28, 15.06.2024

Abstract

Petrol ve gaz üretim endüstrilerinin Kuzey Kutbu bölgesine artan ilgisi, soğuğa dayanıklı malzeme ve yapılar üzerine araştırmaları teşvik etmiştir. Bu petrol ve gaz tesisleri, hidrokarbonları ve diğer yanıcı yakıtları kullandığından, kazalar meydana gelmiş ve her zaman yüksek potansiyel kazara patlama riski mevcuttur. Son yıllarda, patlama ve bir "Patlamaya Dayanıklı Tasarım" elde etme ile ilgili güvenlik endişelerine önemli ölçüde vurgu yapılmıştır. Bu makale, patlama yüküne maruz kalan yapıların dinamik tepkisini değerlendirmek için şu anda endüstride kullanılan patlama analizi tekniklerine genel bir bakış sunmaktadır. Ek olarak, kullanımda olan veya Arctic endüstriyel yapıları için potansiyel olarak kullanılabilecek malzemelerin mühendislik özellikleri üzerindeki düşük sıcaklık etkileri için kapsamlı bir genel bakış sunulmaktadır. Şu anda, düşük sıcaklık koşullarında yapıların patlamaya dayanıklı tasarımını ele alan belirli endüstri standartları veya yönergeleri bulunmamaktadır. Bu gerçeğe bağlı olarak, bu makale, Kuzey Kutbu'nda veya düşük hizmet sıcaklıklarında hem mevcut hem de önerilen yapıların patlama değerlendirmeleri için çeşitli öneriler sunmaktadır.

References

  • United States Energy Information Administration. Russian Metals for Arctic Offshore Structures, Pavel layus and Arctic Oil and Natural Gas Resources; 2021 [cited July 2021]. Available from: https://www.eia.gov/, www.eia.doe.gov/
  • Sohn, J. M., Kim, S. J., Seong, D. J., Kim, B. J., Ha, Y. C., Seo, J. K., & Paik, J. K. Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions. Structural engineering and mechanics: An international journal. 2014, 51(5), 755-771.
  • Yan, J. B., Liu, X. M., Liew, J. R., Qian, X., & Zhang, M. H. Steel–concrete–steel sandwich system in Arctic offshore structure: Materials, experiments, and design. Materials & Design. 2016 91, 111-121.
  • NOAA. National Oceanic and Atmospheric Administration; 2021 [cited July 2021]. Available from: https://www.noaa.gov/
  • ISO 19902. Petroleum and natural gas industries — Fixed steel offshore structures. 2020.
  • Stephen, J. J., Anandavalli, N., Ponnudurai, R., & Prakash, A. Behaviour of steel-concrete composite panels subjected to blast loads. Education. 2010
  • Biggs JM. Introduction to Structural Dynamics. McGraw-Hill: New York; 1964.
  • Mocibob, D. Glass panel under shear loading: use of glass envelopes in building stabilization (No. 4185). EPFL. 2008.
  • UFC 3-340-02. Structures to Resist the Effects of Accidental Explosions. Unified Facilities Criteria. 2008.
  • ASCE. Design of Blast-Resistant Buildings in Petrochemical Facilities, 2nd edition, 2010.
  • Burgan B. Elevated temperature and high strain rate properties of offshore steels. Offshore Technology Report 2001/020. 2001.
  • Bogosian D, Avenessian HD. To Film or Not To Film: Effects of Anti-Shatter Film on Blunt Trauma Lethality From Tempered Glass. 17th International Symposium on Military Aspects of Blast and Shock. Las Vegas; 2002.
  • Dutta PK. Special Report 88-9 Behavior of Materials at Cold Regions Temperatures. Part 1: Program Rationale and Test Plan. US Army Corps. of Engineers. 1988.
  • Salmon CG and Johnson JE. Steel Structures, Design and behavior. 4th Ed. Pearson; 1995.
  • Brechna H, Hartwig G, and Schauer W. Cryogenic properties of metallic and non-metallic materials utilized in low temperature and superconducting magnets. Proceedings, 8th International Conference on High-Energy Accelerators. Geneva, Switzerland; 1971.
  • Seop S, Hae-Moo L, and Moon-Saeng K. Impact tensile behavior of 9% nickel steel at low temperature. International Journal of Impact Engineering. 2000;24(6-7).
  • BS EN 1993-1-10:2005 - Eurocode 3: Design of steel structures, Material toughness and through-thickness properties. 2005.
  • ASTM-A709M-11 Standard Specification for Structural Steel for Bridges. 2020.
  • Montejo LA, Sloan JE, Kowalsky MJ, Hassan T. Cyclic Response of Reinforced Concrete Members at Low Temperatures. Journal of Cold Regions Engineering. 2008;22(3).
  • Montejo L, Marx E. and Kowalsky. M., Seismic Design of Reinforced Concrete Bridge Columns at Subfreezing Temperatures. ACI Structural Journal. 2010;107(4).
  • Kropschot RH, Mikesell RP. Strength and Fatigue of Glass at Very Low Temperatures. Journal of Applied Physics. 1957;28(5):610-614.
There are 21 citations in total.

Details

Primary Language English
Subjects Structural Engineering
Journal Section Research Articles
Authors

Ömer Faruk Nemutlu 0000-0001-7841-3911

Ali Sarı 0000-0002-6888-1276

Bilal Balun 0000-0003-0906-4484

Early Pub Date June 12, 2024
Publication Date June 15, 2024
Submission Date December 5, 2023
Acceptance Date June 12, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

Vancouver Nemutlu ÖF, Sarı A, Balun B. Blast Resistant Design in Cold Regions. BUTS. 2024;5(1):1-28.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.