Research Article
BibTex RIS Cite

Mathematical Analysis and Control of Six Degrees of Freedom Flight Simulators

Year 2024, Volume: 5 Issue: 1, 62 - 77, 15.06.2024

Abstract

In this study; information was given about the mechanical designs of six-degree-of-freedom flight simulators used for training purposes in the aviation industry, and all the detailed mathematical analyzes required for the control of the systems were carried out in detail. First of all, kinematic analyzes of a sample simulator were made, and then the dynamic model of linear motors used as actuators in the system was obtained by using Kirchhoff and Newton's laws. All the outputs obtained as a result of the mathematical analyzes were used in the real-time trajectory control of the system. Thanks to the kinematics, control and data communication sub-functions prepared in Matlab-Simulink, the performance outputs of the system for different trajectories were examined in detail. According to the findings obtained from the real-time trajectory control experiments, it has been shown that the mathematical analyzes for the system are correct and the trajectory tracking performance of the system can be increased, especially by determining the PID controller parameters depending on all system parameters.

References

  • Yavuz S. Seri Manipülatörlerin Dönüşüm Matrislerinin Elde Edilmesinin Kolay Yolları. Buts. 2023;4(2):1-7.
  • Dasgupta, D, Mruthyunjaya T. S. Singularity-free Path Planning for the Stewart Platform Manipulator. Mechanism and Machine Theory. 1998;33.
  • Stewart, D. A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers. 1965; 180(1): 371-386.
  • Fichter EF. A Stewart Platform- Based Manipulator: General Theory and Practical Construction. The International Journal of Robotics Research. 1986;5(2):157-182.
  • https://www.havelsan.com.tr/sektorler/egitim-ve-simulasyon/sivil-havacilik/havelsan-ucus-simulatorleri (Erşim Tarihi 20.01.2024)
  • Tsai, L. W. Position Analysis of Serial Manipulators, Chapter 10, Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Willey & Sons Inc., New York. 1999; 424-456.
  • Wang, Z., He, J., and Gu H. Forward kinematics analysis of a six degree of freedom Stewart platform based on independent component. IEEE Transaction on Systems, 2010:1083-4427.
  • Su, Y. X., Zang, C. H. and Duan B.Y. Singularity analysis of a 6 DOF Stewart platform using genetic algorithm. IEEE International Conference on Systems, Man and Cybernetics. 2002.
  • Tsai, L. W. Solving the inverse dynamics of parallel manipulators by the principle of virtual work. Proc. ASME Design Engineering Technical Conference. 1998.
  • Lebret, G., Liu, K., and Lewis, F. L. Dynamic analysis and control of a Stewart platform manipulator. J. Robot. Syst.1993:10(5), 629-655.
  • Mei, Q., She, J. Wang, Wu F. Wang and Nakanishi Y., Performance Enhancement for an Equivalent-Input-Disturbance-Based Control System Using a Sliding-Mode Controller. IEEE/ASME Transactions on Mechatronics. 2023:28(3), 1456-1465
  • Xie, B. and Dai, S. Optimal trajectory generation for stewart platform using discrete mechanics and optimal control. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China. 2018: 980-985
  • Machiani, J. H. Masouleh, M. T. Kalhor, A. Tabrizi M. G. and Sanie, F. Control of a pneumatically actuated 6-DOF Gough-Stewart platform. 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran. 2014:166-171.
  • Yang, C. Huang, Q. Jiang, H. Peter, O. O. Han, J. PD control with gravity compensation for hydraulic 6-DOF parallel manipülatör. Mechanism and Machine Theory. 2010; 45.

Altı Serbestlik Dereceli Uçuş Simülatörlerinin Matematiksel Analizi ve Kontrolü

Year 2024, Volume: 5 Issue: 1, 62 - 77, 15.06.2024

Abstract

Bu çalışmada; havacılık sektöründe eğitim amaçlı olarak kullanılan altı serbestlik dereceli uçuş simülatörlerinin mekanik tasarımları hakkında bilgi verilmiş ve sistemlerin kontrolü için gerekli olan detaylı tüm matematiksel analizler ayrıntılı bir şekilde gerçekleştirilmiştir. Öncelikle örnek bir simülatöre ait kinematik analizler yapılmış ardından sistemde eyleyici olarak kullanılan doğrusal motorların dinamik modeli Kirchhoff ve Newton kanunları kullanılarak elde edilmiştir. Yapılan matematiksel analizler sonucunda elde edilen tüm çıktılar sistemin gerçek zamanlı yörünge kontrolünde kullanılmıştır. Matlab-Simulink’ de hazırlanan kinematik, kontrol ve veri iletişim alt fonksiyonları sayesinde sistemin farklı yörüngeler için vermiş olduğu performans çıktıları detaylı bir şekilde incelenmiştir. Gerçek zamanlı yörünge kontrol deneylerinden elde edilen bulgulara göre sistem için yapılan matematiksel analizlerin doğru olduğu ve özellikle PID kontrolcü parametrelerinin tüm sistem parametrelerine bağlı olarak belirlenmesiyle sistemin yörünge takip performansının artırılabileceği gösterilmiştir.

References

  • Yavuz S. Seri Manipülatörlerin Dönüşüm Matrislerinin Elde Edilmesinin Kolay Yolları. Buts. 2023;4(2):1-7.
  • Dasgupta, D, Mruthyunjaya T. S. Singularity-free Path Planning for the Stewart Platform Manipulator. Mechanism and Machine Theory. 1998;33.
  • Stewart, D. A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers. 1965; 180(1): 371-386.
  • Fichter EF. A Stewart Platform- Based Manipulator: General Theory and Practical Construction. The International Journal of Robotics Research. 1986;5(2):157-182.
  • https://www.havelsan.com.tr/sektorler/egitim-ve-simulasyon/sivil-havacilik/havelsan-ucus-simulatorleri (Erşim Tarihi 20.01.2024)
  • Tsai, L. W. Position Analysis of Serial Manipulators, Chapter 10, Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Willey & Sons Inc., New York. 1999; 424-456.
  • Wang, Z., He, J., and Gu H. Forward kinematics analysis of a six degree of freedom Stewart platform based on independent component. IEEE Transaction on Systems, 2010:1083-4427.
  • Su, Y. X., Zang, C. H. and Duan B.Y. Singularity analysis of a 6 DOF Stewart platform using genetic algorithm. IEEE International Conference on Systems, Man and Cybernetics. 2002.
  • Tsai, L. W. Solving the inverse dynamics of parallel manipulators by the principle of virtual work. Proc. ASME Design Engineering Technical Conference. 1998.
  • Lebret, G., Liu, K., and Lewis, F. L. Dynamic analysis and control of a Stewart platform manipulator. J. Robot. Syst.1993:10(5), 629-655.
  • Mei, Q., She, J. Wang, Wu F. Wang and Nakanishi Y., Performance Enhancement for an Equivalent-Input-Disturbance-Based Control System Using a Sliding-Mode Controller. IEEE/ASME Transactions on Mechatronics. 2023:28(3), 1456-1465
  • Xie, B. and Dai, S. Optimal trajectory generation for stewart platform using discrete mechanics and optimal control. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China. 2018: 980-985
  • Machiani, J. H. Masouleh, M. T. Kalhor, A. Tabrizi M. G. and Sanie, F. Control of a pneumatically actuated 6-DOF Gough-Stewart platform. 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran. 2014:166-171.
  • Yang, C. Huang, Q. Jiang, H. Peter, O. O. Han, J. PD control with gravity compensation for hydraulic 6-DOF parallel manipülatör. Mechanism and Machine Theory. 2010; 45.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Simulation, Modelling, and Programming of Mechatronics Systems
Journal Section Research Articles
Authors

Ahmet Dumlu 0000-0002-2181-5386

Merve Kurt 0000-0002-8969-4576

Early Pub Date June 12, 2024
Publication Date June 15, 2024
Submission Date January 21, 2024
Acceptance Date February 14, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

Vancouver Dumlu A, Kurt M. Altı Serbestlik Dereceli Uçuş Simülatörlerinin Matematiksel Analizi ve Kontrolü. BUTS. 2024;5(1):62-77.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.