Araştırma Makalesi
BibTex RIS Kaynak Göster

Production of Electrical Energy From Food Industry Wastes Using Microbial Fuel Cell Technology

Yıl 2018, Cilt: 8 Sayı: 2/2, 22 - 36, 27.12.2018

Öz

Today, most food waste is disposed of by conventional processes like composting and burning which can causing
groundwater pollution, multiplication of disease-causing organisms and toxic gas emissions. This scope of work;
The use of food wastes as a substrate in Microbial Fuel Cell (MYH) is aimed at the treatment of food wastes and
energy recovery. In the study, electricity production with MYH, which we designed using molasses, whey and
olive mill waste water as food waste, has been successfully accomplished. Molasses was also measured with a
maximum production of 0,54 V electricity generation among the wastewater. In this study, with an integrated
approach to sustainability, it is foreseen that the electricity needs of the enterprises can be met within their own
facilities by eliminating the waste from the system and eliminating the problems in the system

Kaynakça

  • Adekunle, A., Raghavan, V., Tartakovsky, B. ( 2017). Carbon source and energy harvesting optimization in solid anolyte microbial fuel cells. J. Power Sources, 356, 324–330.
  • Adhikari, B.K., Barrington, S., Martinez, J., King, S. (2008). Characterization of food waste and bulking agents for composting. Waste Manage, 28, 795–804.
  • Antonopoulou, G., Stamatelatou, K., Bebelis, S., Lyberatos, G. (2008). Electricity generation from cheese whey using a microbial fuel cell. CHISA - 18th International Congress of Chemical and Process Engineering.
  • Antonopoulou, G., Stamatelatou, K., Bebelisa, S., Lyberatosa, G. (2010). Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochemical Engineering Journal, 50, 10–15.
  • Bermek, H. et al. (2014). Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World J Microbiol Biotechnol, 30, 1177–1185.
  • Colombo, A., Schievano, A., Trasatti, S.P., Morrone, R., D'Antona, N., Cristiani, P. (2017). Signal trends of microbial fuel cells fedwith different food-industry residues. Int J Hydrogen Energy, 42, 1841-1852.
  • Erenler Özalp, Şebnem. (2007). L- Asparaginaz Geninin (ANSb) Farklı Gram-Negatif Bakterilere Klonlanması, İzolasyonu Ve Ekspresyonu. İnönü Üniversitesi- Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Doktora Tezi.
  • Gajda, I., Greenman, J., Santoro, C., Serov, A., Melhuish, C., Atanassov, P. et al. (2018). Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy, 144,1073-9. https://doi.org/10.1016/j.energy.2017.11.135.
  • Ge, Z., He, Z. (2016). Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environ. Sci. Water. Res. 2, 274–281.
  • Gebresemati, M., Das, G., Park, B.J, Yoon, H.H. (2017). Electricity production from macroalgae by a microbial fuel cell using nickel nanoparticles as cathode catalysts. Int J Hydrogen Energy, 42-29874-80. https://doi.org/10.1016/ j.ijhydene.2017.10.127.
  • Gezginci, M. (2013). Mikrobiyal Yakıt Hücrelerinde Farklı Substrat Kaynaklarının Arıtma ve Yenilenebilir Enerji Üretimi Üzerine Etkileri. Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Kahramanmaraş, 48s.
  • Gıda Sanayi Atıkları. (17.06.2007). www.tuik.gov.tr
  • Gonzalez, S. (1996). The biotechnological utilization of cheese whey: a review. Bioresource Technology (57) 1–11.
  • Goud, R.K, Babu, P.S, Mohan, S.V. (2011). Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bioelectrochemical evaluation under increasing substrate loading condition. Int J Hydrogen Energy,36,6210-6218. https://doi.org/10.1016/j.ijhydene.2011.02.056.
  • Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., Meybeck, A. (2011). Global food losses and FW: Extent, causes and prevention. FAO, Rome.
  • He, Z., Angenent, L.T. (2006). Application of bacterial biocathodes in microbial fuel cells. Electroanalysis, 18(19-20), 2009-2015.He, Z., Huang, Y., Manohar, A.K. Mansfeld F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cel., Bioelectrochemistry, 74, 78–82.https://doi.org/10.1016/j.ijhydene.2016.09.069.Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L. (2005). Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 30 (5), 471–483.
  • Jadhav, D.A, Jain, S.C, Ghangrekar, M.M. (2016). Cow's urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell. Energy,113,76-84.https://doi.org/ 10.1016/j.energy.2016.07.025.
  • Khanal, S.K., Li, L., Sung, S. (2004). Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29 (11), 1123–1131.
  • Koch, K., Helmreich, B., Drewes, J.E. (2015). Co-digestion of food waste in municipal wastewater treatment plants: effect of different mixtures on methane yield and hydrolysis rate constant. Appl. Energy 137, 250–255.
  • Li, H., Tian, Y., Zuo, W., Zhang, J., Pan, X., Li, L. et al. (2016). Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell. Bioresour Techno, 205, 104-10. https://doi.org/10.1016/ j.biortech.2016.01.042.
  • Li, W.W., Yu, H.Q., He, Z. (2014). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci, 7, 911–924.
  • Liu, H. ve Logan, B.E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38, 4040-4046.
  • Ma, Y.Q., Cai, W.W., Liu, Y. (2017a). An integrated engineering system for maximizing bioenergy production from food waste. Appl. Energy, 206, 83–89.
  • McIlvaine. (2003). www.mcilvainecompany.com/generic_examples/ food.htm
  • Mischopoulou, M., Naidis, P., Kalamaras, S., Kotsopoulos, T., Samaras, P. (2016). Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater. Renewable Energy 96(Part B) 1078–85 .
  • Mohan, Y., Kumar, S., Manoj, M., Das, D. (2008). Electricity generation using microbial fuel cells. Int J Hydrogen Energy, 33, 423 – 426.Nguyen, H.T.H., Kakarla, R., Min, B. (2017). Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int J Hydrogen Energ, 42, 29433-42. https://doi.org/10.1016/ j.ijhydene.2017.10.011.
  • Nicholson, F., Bhogal, A., Cardenas, L., Chadwick, D., Misselbrook, T., Rollett, A., Taylo,r M., Thorman, R., Williams, J. (2017). Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environ. Pollut, 228, 504–516.
  • Oh, S.E., Van Ginkel, S., Logan, B.E. (2003). The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 37 (22), 5186–5190.
  • Onodera, T., Sase, S., Choeisai, P., Yoochatchaval, W., Sumino, H., Yamaguchi, T. et al. (2013). Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process. Bioresour Technol (131) 295–302.
  • Öztürk, M., Artan Onat, T. (2017). The Usage of Molasses and Mediators in Microbial Fuel Cells. JOTCSB,5(sp. is. 1), 77–84.
  • Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101, 1533–1543.
  • Rikame, S.S., Mungray, A.A., Mungray, A.K. (2012). Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell. Int Biodeterior Biodegrad,75,131-137. https://doi.org/10.1016/j.ibiod.2012.09.006.
  • Rodrigo, M.A., Canizares, P., Lobato, J., Paz, R., Saez ,C., Linares, J.J. (2007). Production of electricity from the treatment of urban water using a microbial fuel cell. Journal of Power Sources, 169, 198-204.
  • Satyawali, Y., Balakrishnan, M. (2008). Wastewater treatment in molasses-based al- cohol distilleries for COD and color removal: a review. J Environ Manage, (86), 481–497 .
  • Sciarria, T.P., Tenca, A., D’Epifanio, A., Mecheri, B., Merlino, G., Barbato, M., Borin, S., Licoccia, S., Garavaglia, V., Adani, F. (2013). Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresource Technology, 147, 246–253.
  • Sobhi, B., Isam, S., Ahmad, Y., Jacob, H. (2007) Reducing the Environmental Impact of Olive Mill Wastewater in Jordan, Palestine and Israel. In: Shuval H., Dweik H. (eds) Water Resources in the Middle East. Springer, Berlin, Heidelberg.
  • Sobieszuk, P., Zamojska-Jaroszewicz, A., Makowski, L. (2017). Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling. J Power Sources, 371,178-187. https://doi.org/10.1016/ j.jpowsour.2017.10.032.
  • Sonawane, J.M., Adeloju, S.B., Ghosh, P.C. (2017). Landfill leachate: a promising substrate for microbial fuel cells. Int J Hydrogen Energy,42,23794-8. https://doi.org/10.1016/ j.ijhydene.2017.03.137.
  • Song, Y., Xiao, L., Jayamani, I., He, Z., Cupples, A.M. (2015). A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing. J. Microbiol. Meth, 108, 4–11.
  • Speece, R.E. (1996). Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, TN.Taşkan E, 2013. Mikrobiyal Yakıt Hücrelerinde Farklı Kirleticilere Göre Elektrik Üretim Kapasitesi Ve Mikrobiyal Tür Değişiminin İncelenmesi. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Elazığ, 271s.
  • Tremouli, A., Antonopoulou, G., Bebelis, S., Lyberatos, G. (2013). Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads. Bioresource Technology, 131, 380–389.
  • Tsioptsias, C., Lionta, G., Deligiannis, A., Samaras, P. (2016). Enhancement of the per- formance of a combined microalgae-activated sludge system for the treat- ment of high strength molasses wastewater. J Environ Manage 183(Part 1) 126–132 .
  • U.S. Environmental Protection Agency. (2011). Municipal Solid Waste in the United States, Facts and Figures; EPA530-R-13-001. Office of Solid Waste, Washington, DC, 2010.
  • Ulusoy, I., Dimoglo, A. (2018). Electricity generation in microbial fuel cell systems with Thiobacillus ferrooxidans as the cathode microorganism. Int J Hydrogen Energy, 43,171-178. https://doi.org/10.1016/j.ijhydene.2017.10.155.
  • Yağcı, S., Altan, A., Göğüş, F., Maskan, M. (2006). Gıda Atıklarının Alternatif Kullanım Alanları. Türkiye 9. Gıda Kongresi; 24-26 Mayıs, Bolu.
  • Zanbak, C. (2002). Türkiye’de makro düzey sanayi atıkları yönetim sorunları ve çözüm yaklasımları. Tübitak Vizyon 2023 Paneli-Katkı Dökümanı, 1-6.
  • Zhang, Y.J., Sun, C.Y., Liu, X.Y., Han, W., Dong, Y.X., Li, Y.F. (2013). Electricity production from molasses wastewater in two-chamber microbial fuel cell. Water Science and Technology Published July, 68 (2), 494-498.
  • Zhong, C., Zhang, B., Kong, L., An, X., Jinren, Nia. (2011). Electricity generation from molasses wastewater by an anaerobic baffled stacking microbial fuel cell. J Chem Technol Biotechnol, 86, 406–413.

Mikrobiyal Yakıt Hücre Teknolojisini Kullanarak Gıda Endüstrisi Atıklarından Elektrik Enerjisi Üretimi

Yıl 2018, Cilt: 8 Sayı: 2/2, 22 - 36, 27.12.2018

Öz

Günümüzde
gıda atıklarının çoğu; yer altı suyu kirliliğine, hastalık yapıcı
organizmaların çoğalmasına ve zehirli gaz emisyonuna neden olabilecek depolama,
kompost ve yakma gibi geleneksel yöntemlerle bertaraf edilmektedir. Bu
geleneksel yöntemlerin, sürdürülemez ve ekonomik olmaması, gıda atıklarındaki
değerli besin ve enerji kaynağının tam olarak veya verimli bir şekilde
kullanılamamasına neden olmaktadır. Bu nedenle, yüksek oranda biyolojik olarak
parçalanabilen atığın, aynı anda arıtım ile enerji geri kazanımı için
alternatif bir kaynak olarak kullanılması oldukça önemli bir yaklaşım olmaktadır.
Mikrobiyal Yakıt Hücreleri (MYH); katalizör olarak mikroorganizmaları
kullanarak gıda atıkları gibi çeşitli organik atıklardan elektrik üretimini
gerçekleştirebilen sistemlerdir. Bu çalışma kapsamında; MYH'de substrat olarak
gıda atıklarının kullanılması, bu şekilde gıda sanayi atıksularının arıtılması
ve eş zamanlı olarak enerji geri kazanımı amaçlanmıştır. Çalışmada; gıda sanayi
atıksuları olarak Melas, Peynir altısuyu (PAS), Zeytin Karasuyu (ZKS) ve özel
olarak tasarladığımız MYH kullanılarak 
elektrik enerjisi üretimi gerçekleştirilmiştir. Atıksular arasında en
yüksek verim maksimum olarak 0,54 V elektrik üretimi ile Melas’da ölçülmüştür.
Literatürle kıyaslandığında elde ettiğimiz verim oldukça yüksek olarak
belirlenmiştir.  Bu çalışmanın en önemli
sonucu olarak, sürdürülebilirliğin ele alındığı entegre bir yaklaşımla; gıda
atıklarının önerilen sistem içinde arıtımı ile atıkları işletmeler için bir
sorun olmaktan çıkarıp işletmelerin elektrik enerjisi ihtiyaçlarının yine kendi
tesisleri içinde karşılanabilmesi öngörülmektedir. 

Kaynakça

  • Adekunle, A., Raghavan, V., Tartakovsky, B. ( 2017). Carbon source and energy harvesting optimization in solid anolyte microbial fuel cells. J. Power Sources, 356, 324–330.
  • Adhikari, B.K., Barrington, S., Martinez, J., King, S. (2008). Characterization of food waste and bulking agents for composting. Waste Manage, 28, 795–804.
  • Antonopoulou, G., Stamatelatou, K., Bebelis, S., Lyberatos, G. (2008). Electricity generation from cheese whey using a microbial fuel cell. CHISA - 18th International Congress of Chemical and Process Engineering.
  • Antonopoulou, G., Stamatelatou, K., Bebelisa, S., Lyberatosa, G. (2010). Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochemical Engineering Journal, 50, 10–15.
  • Bermek, H. et al. (2014). Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World J Microbiol Biotechnol, 30, 1177–1185.
  • Colombo, A., Schievano, A., Trasatti, S.P., Morrone, R., D'Antona, N., Cristiani, P. (2017). Signal trends of microbial fuel cells fedwith different food-industry residues. Int J Hydrogen Energy, 42, 1841-1852.
  • Erenler Özalp, Şebnem. (2007). L- Asparaginaz Geninin (ANSb) Farklı Gram-Negatif Bakterilere Klonlanması, İzolasyonu Ve Ekspresyonu. İnönü Üniversitesi- Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Doktora Tezi.
  • Gajda, I., Greenman, J., Santoro, C., Serov, A., Melhuish, C., Atanassov, P. et al. (2018). Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy, 144,1073-9. https://doi.org/10.1016/j.energy.2017.11.135.
  • Ge, Z., He, Z. (2016). Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environ. Sci. Water. Res. 2, 274–281.
  • Gebresemati, M., Das, G., Park, B.J, Yoon, H.H. (2017). Electricity production from macroalgae by a microbial fuel cell using nickel nanoparticles as cathode catalysts. Int J Hydrogen Energy, 42-29874-80. https://doi.org/10.1016/ j.ijhydene.2017.10.127.
  • Gezginci, M. (2013). Mikrobiyal Yakıt Hücrelerinde Farklı Substrat Kaynaklarının Arıtma ve Yenilenebilir Enerji Üretimi Üzerine Etkileri. Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Kahramanmaraş, 48s.
  • Gıda Sanayi Atıkları. (17.06.2007). www.tuik.gov.tr
  • Gonzalez, S. (1996). The biotechnological utilization of cheese whey: a review. Bioresource Technology (57) 1–11.
  • Goud, R.K, Babu, P.S, Mohan, S.V. (2011). Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bioelectrochemical evaluation under increasing substrate loading condition. Int J Hydrogen Energy,36,6210-6218. https://doi.org/10.1016/j.ijhydene.2011.02.056.
  • Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., Meybeck, A. (2011). Global food losses and FW: Extent, causes and prevention. FAO, Rome.
  • He, Z., Angenent, L.T. (2006). Application of bacterial biocathodes in microbial fuel cells. Electroanalysis, 18(19-20), 2009-2015.He, Z., Huang, Y., Manohar, A.K. Mansfeld F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cel., Bioelectrochemistry, 74, 78–82.https://doi.org/10.1016/j.ijhydene.2016.09.069.Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L. (2005). Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 30 (5), 471–483.
  • Jadhav, D.A, Jain, S.C, Ghangrekar, M.M. (2016). Cow's urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell. Energy,113,76-84.https://doi.org/ 10.1016/j.energy.2016.07.025.
  • Khanal, S.K., Li, L., Sung, S. (2004). Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29 (11), 1123–1131.
  • Koch, K., Helmreich, B., Drewes, J.E. (2015). Co-digestion of food waste in municipal wastewater treatment plants: effect of different mixtures on methane yield and hydrolysis rate constant. Appl. Energy 137, 250–255.
  • Li, H., Tian, Y., Zuo, W., Zhang, J., Pan, X., Li, L. et al. (2016). Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell. Bioresour Techno, 205, 104-10. https://doi.org/10.1016/ j.biortech.2016.01.042.
  • Li, W.W., Yu, H.Q., He, Z. (2014). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci, 7, 911–924.
  • Liu, H. ve Logan, B.E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38, 4040-4046.
  • Ma, Y.Q., Cai, W.W., Liu, Y. (2017a). An integrated engineering system for maximizing bioenergy production from food waste. Appl. Energy, 206, 83–89.
  • McIlvaine. (2003). www.mcilvainecompany.com/generic_examples/ food.htm
  • Mischopoulou, M., Naidis, P., Kalamaras, S., Kotsopoulos, T., Samaras, P. (2016). Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater. Renewable Energy 96(Part B) 1078–85 .
  • Mohan, Y., Kumar, S., Manoj, M., Das, D. (2008). Electricity generation using microbial fuel cells. Int J Hydrogen Energy, 33, 423 – 426.Nguyen, H.T.H., Kakarla, R., Min, B. (2017). Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int J Hydrogen Energ, 42, 29433-42. https://doi.org/10.1016/ j.ijhydene.2017.10.011.
  • Nicholson, F., Bhogal, A., Cardenas, L., Chadwick, D., Misselbrook, T., Rollett, A., Taylo,r M., Thorman, R., Williams, J. (2017). Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environ. Pollut, 228, 504–516.
  • Oh, S.E., Van Ginkel, S., Logan, B.E. (2003). The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 37 (22), 5186–5190.
  • Onodera, T., Sase, S., Choeisai, P., Yoochatchaval, W., Sumino, H., Yamaguchi, T. et al. (2013). Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process. Bioresour Technol (131) 295–302.
  • Öztürk, M., Artan Onat, T. (2017). The Usage of Molasses and Mediators in Microbial Fuel Cells. JOTCSB,5(sp. is. 1), 77–84.
  • Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101, 1533–1543.
  • Rikame, S.S., Mungray, A.A., Mungray, A.K. (2012). Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell. Int Biodeterior Biodegrad,75,131-137. https://doi.org/10.1016/j.ibiod.2012.09.006.
  • Rodrigo, M.A., Canizares, P., Lobato, J., Paz, R., Saez ,C., Linares, J.J. (2007). Production of electricity from the treatment of urban water using a microbial fuel cell. Journal of Power Sources, 169, 198-204.
  • Satyawali, Y., Balakrishnan, M. (2008). Wastewater treatment in molasses-based al- cohol distilleries for COD and color removal: a review. J Environ Manage, (86), 481–497 .
  • Sciarria, T.P., Tenca, A., D’Epifanio, A., Mecheri, B., Merlino, G., Barbato, M., Borin, S., Licoccia, S., Garavaglia, V., Adani, F. (2013). Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresource Technology, 147, 246–253.
  • Sobhi, B., Isam, S., Ahmad, Y., Jacob, H. (2007) Reducing the Environmental Impact of Olive Mill Wastewater in Jordan, Palestine and Israel. In: Shuval H., Dweik H. (eds) Water Resources in the Middle East. Springer, Berlin, Heidelberg.
  • Sobieszuk, P., Zamojska-Jaroszewicz, A., Makowski, L. (2017). Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling. J Power Sources, 371,178-187. https://doi.org/10.1016/ j.jpowsour.2017.10.032.
  • Sonawane, J.M., Adeloju, S.B., Ghosh, P.C. (2017). Landfill leachate: a promising substrate for microbial fuel cells. Int J Hydrogen Energy,42,23794-8. https://doi.org/10.1016/ j.ijhydene.2017.03.137.
  • Song, Y., Xiao, L., Jayamani, I., He, Z., Cupples, A.M. (2015). A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing. J. Microbiol. Meth, 108, 4–11.
  • Speece, R.E. (1996). Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, TN.Taşkan E, 2013. Mikrobiyal Yakıt Hücrelerinde Farklı Kirleticilere Göre Elektrik Üretim Kapasitesi Ve Mikrobiyal Tür Değişiminin İncelenmesi. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Elazığ, 271s.
  • Tremouli, A., Antonopoulou, G., Bebelis, S., Lyberatos, G. (2013). Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads. Bioresource Technology, 131, 380–389.
  • Tsioptsias, C., Lionta, G., Deligiannis, A., Samaras, P. (2016). Enhancement of the per- formance of a combined microalgae-activated sludge system for the treat- ment of high strength molasses wastewater. J Environ Manage 183(Part 1) 126–132 .
  • U.S. Environmental Protection Agency. (2011). Municipal Solid Waste in the United States, Facts and Figures; EPA530-R-13-001. Office of Solid Waste, Washington, DC, 2010.
  • Ulusoy, I., Dimoglo, A. (2018). Electricity generation in microbial fuel cell systems with Thiobacillus ferrooxidans as the cathode microorganism. Int J Hydrogen Energy, 43,171-178. https://doi.org/10.1016/j.ijhydene.2017.10.155.
  • Yağcı, S., Altan, A., Göğüş, F., Maskan, M. (2006). Gıda Atıklarının Alternatif Kullanım Alanları. Türkiye 9. Gıda Kongresi; 24-26 Mayıs, Bolu.
  • Zanbak, C. (2002). Türkiye’de makro düzey sanayi atıkları yönetim sorunları ve çözüm yaklasımları. Tübitak Vizyon 2023 Paneli-Katkı Dökümanı, 1-6.
  • Zhang, Y.J., Sun, C.Y., Liu, X.Y., Han, W., Dong, Y.X., Li, Y.F. (2013). Electricity production from molasses wastewater in two-chamber microbial fuel cell. Water Science and Technology Published July, 68 (2), 494-498.
  • Zhong, C., Zhang, B., Kong, L., An, X., Jinren, Nia. (2011). Electricity generation from molasses wastewater by an anaerobic baffled stacking microbial fuel cell. J Chem Technol Biotechnol, 86, 406–413.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ayşe Şebnem Erenler

Esra Nezafed Ülke

Yayımlanma Tarihi 27 Aralık 2018
Gönderilme Tarihi 9 Temmuz 2018
Kabul Tarihi 25 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 2/2

Kaynak Göster

APA Erenler, A. Ş., & Ülke, E. N. (2018). Mikrobiyal Yakıt Hücre Teknolojisini Kullanarak Gıda Endüstrisi Atıklarından Elektrik Enerjisi Üretimi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 8(2/2), 22-36.