Year 2020, Volume 10 , Issue 1, Pages 28 - 41 2020-06-30

Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi
Artificial Neural Network-Based Prediction of Thermal Properties of Light Building Materials

Süleyman POLAT [1] , Şehmus FİDAN [2] , Hasan OKTAY [3]


Binaların ısıtılması ve soğutulması için tüketilen enerjinin artmasıyla birlikte ısıl performansı yüksek olan bina malzemelerine olan ihtiyaç günden güne artmaktadır. Bina malzemelerinin ısıl performansı ise direk olarak malzemelerin termofiziksel özellikleri ile değişim göstermektedir. Bu çalışmada, binalarda enerji verimliliğini sağlamak için, uygun mekanik özellikler korunarak yüksek ısı yalıtım özelliğine sahip olan yeni yapı malzemeleri elde etmek amacıyla deneysel ve teorik bir çalışma gerçekleştirilmiştir. Bu amaçla, sabit su-çimento oranında, normal agrega yerine hacimce %10, %20, %30, %40 ve %50 oranlarında pomza, genleştirilmiş perlit ve lastik agregaları kullanılarak çeşitli beton numuneleri hazırlanmıştır. 102 adet beton numunesi farklı bileşimlerde ve değişik malzemeler kullanılarak üretilmiştir. Tüm numunelerin mekanik testleri yapılmış, ısıl iletkenlik özellikleri sıcak disk yöntemi ile ASTM ve EN standartlarına uygun olarak belirlenmiştir. Üretilen numunelerden deneysel olarak elde edilen ısıl iletkenlik özelliği geliştirilen yapay sinir ağı çıkışlarıyla karşılaştırılmış ve sonuçlar incelenmiştir. Geliştirilen yapay sinir ağında sadece mekanik özellikler giriş olarak kullanılmış ve malzemelerin ısıl iletkenlik ile ilişkisi araştırılmıştır. Yapay sinir ağı girişi olarak beton tipi, agrega oranı, yoğunluk, basma dayanımı, porozite ve ısıl iletkenlik olarak belirlenmiştir. Çıktılar karşılaştırıldığında, bulunan sonuçların birbirleriyle uyumlu olduğu ve hafif betonlara ait ısıl iletkenlik değeri %-1.09 ile %6,4 arasında bir hata ile tahmin edilmesinin kabul edilebilir olduğu görülmüştür. 
The growing concern about energy consumption of heating and cooling of buildings has led to a demand for improved thermal performances of building materials. In this study, an experimental investigation is performed to predict the thermal insulation properties of wall and roof structures of which the mechanical properties are known, by using back-propagation artificial neural network (ANNs) method. The produced samples are cement based and have relatively high insulation properties for energy efficient buildings. In this regard, 102 new samples and their compositions are produced and their mechanical and thermal properties are tested in accordance with ASTM and EN standards. Then, comparisons have been made between the determined thermal conductivity of the newly produced structures, which are obtained from experimental method and ANN method that uses mechanical properties as input parameters. From the test results, since the percentage errors in the thermal conductivity values between experimental data and neural network prediction vary from -1.09% to 6.4%, It can be concluded that the prediction of the artificial neural network has proceed in the correct manner. 
  • Alshihri, M. M., Azmy, A. M., & El-Bisy, M. S. (2009). Neural Networks for Predicting Compressive Strength of Structural Light Weight Concrete, Construction and Building Materials, 23, 6, 2214-2219.
  • Asan, H. (2006). Numerical Computation of Time Lags and Decrement Factors for Different Building Materials, Building and Environment, 41, 5, 615-620.
  • Asan, H., & Sancaktar, Y. S. (1998). Effects of Wall's Thermophysical Properties On Time Lag and Decrement Factor, Energy and Buildings, 28, 2, 159-166.
  • Bansal, K., Chowdhury, S., & Gopal, M. R. (2008). Development of CLTD Values for Buildings Located in Kolkata, India, Applied Thermal Engineering, 28, 10, 1127-1137.
  • Barrios, G., Huelsz, G., Rechtman, R., & Rojas, J. (2011). Wall/roof thermal Performance Differences Between Air-Conditioned and Non Air-Conditioned Rooms, Energy and Buildings, 43, 1, 219-223.
  • Dağsöz, A. K., Işıkel, K., & Bayraktar, K. G. (1999). Yapılarda Sıcak Etkisinin Getirdiği Problemlerin Isı Yalıtımı İle Çözümü ve Enerji Tasarrufu, IV. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, 329-339.
  • Dias, W. P. S., & Pooliyadda, S. P. (2001). Neural Networks for Predicting Properties of Concretes with Admixtures, Construction and Building Materials, 15, 7, 371-379.
  • Eldin, N. N., & Senouci, A. B. (1994). Measurement and Prediction of the Strength of Rubberized Concrete, Cement and Concrete Composites, 16, 4, 287-298.
  • Fausett, L., (1994). Fundamentals of Neural Networks: Architectures, Algorithms, and Applications (No. 0063), Prentice-Hall.
  • Freeman, J. A., & Skapura, D. M. (1991). Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company, USA.
  • Handbook, A. S. H. R. A. E. (2007). HVAC applications, ASHRAE Handbook, Fundamentals. insulation placements, Applied energy, 112, 325-337.
  • Jin, X., Zhang, X., Cao, Y., & Wang, G. (2012). Thermal Performance Evaluation of the Wall Using Heat Flux Time Lag and Decrement Factor, Energy and Buildings, 47, 369-374.
  • Khan, M. I. (2002). Factors Affecting the Thermal Properties of Concrete and Applicability of Its Prediction Models, Building and Environment, 37, 6, 607-614.
  • Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. (2003). An Experimental Study on Thermal Conductivity of Concrete, Cement and Concrete Research, 33, 3, 363-371.
  • Kontoleon, K. J., Theodosiou, T. G., & Tsikaloudaki, K. G. (2013). The Influence of Concrete Density and Conductivity On Walls’ Thermal Inertia Parameters Under a Variety of Masonry and Insulation Placements, Applied Energy,112,325–337.
  • Lai, S., & Serra, M. (1997). Concrete Strength Prediction By Means of Neural Network, Construction and Building Materials, 11, 2, 93-98.
  • Masri, S. F., Chassiakos, A. G., & Caughey, T. K. (1993). Identification of Nonlinear Dynamic Systems Using Neural Networks, Journal of applied mechanics, 60, 1, 123-133.
  • McQuiston, F. C., & Parker, J. D. (1994). Heating, Ventilating, and Air Conditioning: Analysis and Design, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • McQuiston, F. C., & Spitler, J. D. (1992). Cooling and Heating Load Calculation Manual, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • Ni, H. G., & Wang, J. Z. (2000). Prediction of Compressive Strength of Concrete by Neural Networks, Cement and Concrete Research, 30, 8, 1245-1250.
  • Oktay, H., Yumrutaş, R., & Akpolat, A. (2015). Mechanical and Thermophysical Properties of Lightweight Aggregate Concretes, Construction and Building Materials, 96, 217-225.
  • Threlkeld, J. L. (1998). Thermal Environmental Engineering. Prentice Hall.
  • Zhang, Y., Chen, Q., Zhang, Y., & Wang, X. (2013). Exploring Buildings’ Secrets: The Ideal Thermophysical Properties of a Building’s Wall for Energy Conservation, International Journal of Heat and Mass Transfer, 65, 265-273.
  • Zhang, Y., Du, K., He, J., Yang, L., Li, Y., & Li, S. (2014). Impact Factors Analysis on the Thermal Performance of Hollow Block Wall, Energy and Buildings, 75, 330-341.
  • Zhang, Y., Lin, K., Zhang, Q., & Di, H. (2006). Ideal Thermophysical Properties for Free-Cooling (or heating) Buildings with Constant Thermal Physical Property Material, Energy and Buildings, 38, 10, 1164-1170.
Primary Language tr
Subjects Engineering, Mechanical
Journal Section Research Article
Authors

Orcid: 0000-0001-9726-3840
Author: Süleyman POLAT (Primary Author)
Institution: BATMAN UNIVERSITY
Country: Turkey


Orcid: 0000-0001-9726-3840
Author: Şehmus FİDAN
Institution: BATMAN UNIVERSITY
Country: Turkey


Orcid: 0000-0002-0917-7844
Author: Hasan OKTAY
Institution: BATMAN UNIVERSITY
Country: Turkey


Dates

Publication Date : June 30, 2020

Bibtex @research article { buyasambid643721, journal = {Batman Üniversitesi Yaşam Bilimleri Dergisi}, issn = {2147-4877}, eissn = {2459-0614}, address = {Batman Üniversitesi Batı Raman Kampüsü Merkez Kütüphane BATMAN}, publisher = {Batman University}, year = {2020}, volume = {10}, pages = {28 - 41}, doi = {}, title = {Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi}, key = {cite}, author = {Polat, Süleyman and Fi̇dan, Şehmus and Oktay, Hasan} }
APA Polat, S , Fi̇dan, Ş , Oktay, H . (2020). Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi . Batman Üniversitesi Yaşam Bilimleri Dergisi , 10 (1) , 28-41 . Retrieved from https://dergipark.org.tr/en/pub/buyasambid/issue/55551/643721
MLA Polat, S , Fi̇dan, Ş , Oktay, H . "Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi" . Batman Üniversitesi Yaşam Bilimleri Dergisi 10 (2020 ): 28-41 <https://dergipark.org.tr/en/pub/buyasambid/issue/55551/643721>
Chicago Polat, S , Fi̇dan, Ş , Oktay, H . "Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi". Batman Üniversitesi Yaşam Bilimleri Dergisi 10 (2020 ): 28-41
RIS TY - JOUR T1 - Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi AU - Süleyman Polat , Şehmus Fi̇dan , Hasan Oktay Y1 - 2020 PY - 2020 N1 - DO - T2 - Batman Üniversitesi Yaşam Bilimleri Dergisi JF - Journal JO - JOR SP - 28 EP - 41 VL - 10 IS - 1 SN - 2147-4877-2459-0614 M3 - UR - Y2 - 2020 ER -
EndNote %0 Batman Üniversitesi Yaşam Bilimleri Dergisi Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi %A Süleyman Polat , Şehmus Fi̇dan , Hasan Oktay %T Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi %D 2020 %J Batman Üniversitesi Yaşam Bilimleri Dergisi %P 2147-4877-2459-0614 %V 10 %N 1 %R %U
ISNAD Polat, Süleyman , Fi̇dan, Şehmus , Oktay, Hasan . "Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi". Batman Üniversitesi Yaşam Bilimleri Dergisi 10 / 1 (June 2020): 28-41 .
AMA Polat S , Fi̇dan Ş , Oktay H . Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi. Batman univ. yaşam bilim. derg.. 2020; 10(1): 28-41.
Vancouver Polat S , Fi̇dan Ş , Oktay H . Hafif Yapı Malzemelerinin Isıl İletkenlik Özelliklerinin Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi. 2020; 10(1): 28-41.